
R

MicroBlaze™
Hardware
Reference
Guide

March 2002

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

ASYL, FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, TRACE, XACT, XILINX,
XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic Cell, CoolRunner, CORE Gen-
erator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH, FastMap, Fast Zero Power, Foundation, HardWire, IRL, LCA,

LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia, MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, Power-
Maze, QPro, RealPCI, RealPCI 64/66, SelectI/O, SelectRAM, SelectRAM+, Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, Smartspec,

SMARTSwitch, Spartan, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing, Virtex, WebFitter, WebLINX, WebPACK, XABEL, XACTstep,
XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus, XChecker, XDM,

XDS, XEPLD, Xilinx Foundation Series, XPP, XSI, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company and The Pro-
grammable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey any
license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any time, in
order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any
circuitry described herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under one or more
of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155; 4,758,985; 4,820,937; 4,821,233; 4,835,418;

4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135; 5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390;
5,155,432; 5,166,858; 5,224,056; 5,243,238; 5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704;
5,329,174; 5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189; 5,410,194; 5,414,377;
5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021; 5,450,022; 5,453,706; 5,455,525; 5,466,117;
5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707; 5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196;
5,498,979; 5,498,989; 5,499,192; 5,500,608; 5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124;
5,517,135; 5,521,835; 5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528; 5,563,529; 5,563,827;
5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199; 5,581,738; 5,583,450; 5,583,452; 5,592,105;
5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597; 5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021;
5,617,041; 5,617,327; 5,617,573; 5,623,387; 5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106;
5,642,058; 5,646,545; 5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270; 5,675,589; 5,677,638;
5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276; 5,694,399; 5,696,454; 5,701,091; 5,701,441;
5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197; 5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584;
5,734,866; 5,734,868; 5,737,234; 5,737,235; 5,737,631; 5,742,178; 5,742,531; 5,744,974; 5,744,979; 5,744,995; 5,748,942; 5,748,979;
5,752,006; 5,752,035; 5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564; 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479; 5,790,882; 5,795,068;
5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016; 5,815,404; 5,815,405; 5,818,255; 5,818,730;
5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787; 5,828,230; 5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845;
5,831,907; 5,835,402; 5,838,167; 5,838,901; 5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829; 5,844,844; 5,847,577;
5,847,579; 5,847,580; 5,847,993; 5,852,323; 5,861,761; 5,862,082; 5,867,396; 5,870,309; 5,870,327; 5,870,586; 5,874,834; 5,875,111;
5,877,632; 5,877,979; 5,880,492; 5,880,598; 5,880,620; 5,883,525; 5,886,538; 5,889,411; 5,889,413; 5,889,701; 5,892,681; 5,892,961;
5,894,420; 5,896,047; 5,896,329; 5,898,319; 5,898,320; 5,898,602; 5,898,618; 5,898,893; 5,907,245; 5,907,248; 5,909,125; 5,909,453;
5,910,732; 5,912,937; 5,914,514; 5,914,616; 5,920,201; 5,920,202; 5,920,223; 5,923,185; 5,923,602; 5,923,614; 5,928,338; 5,931,962;
5,933,023; 5,933,025; 5,933,369; 5,936,415; 5,936,424; 5,939,930; 5,942,913; 5,944,813; 5,945,837; 5,946,478; 5,949,690; 5,949,712;
5,949,983; 5,949,987; 5,952,839; 5,952,846; 5,955,888; 5,956,748; 5,958,026; 5,959,821; 5,959,881; 5,959,885; 5,961,576; 5,962,881;
5,963,048; 5,963,050; 5,969,539; 5,969,543; 5,970,142; 5,970,372; 5,971,595; 5,973,506; 5,978,260; 5,986,958; 5,990,704; 5,991,523;

5,991,788; 5,991,880; 5,991,908; 5,995,419; 5,995,744; 5,995,988; 5,999,014; 5,999,025; 6,002,282; and 6,002,991; Re. 34,363, Re. 34,444,
and Re. 34,808. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein are free
from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise
any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy or correctness of any engineering

or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without the
written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2002 Xilinx, Inc. All Rights Reserved.

R

MicroBlaze Hardware Reference Guide www.xilinx.com March 2002
1-800-255-7778

MicroBlaze™ Hardware Reference Guide
The following table shows the revision history for this document.

Version Revision

10/15/01 1.9 Initial MDK (MicroBlaze Development Kit) release.

1/14/02 2.1 MDK 2.1 release

3/02 2.2 MDK 2.2 release
March 2002 www.xilinx.com MicroBlaze Hardware Reference Guide
1-800-255-7778

MicroBlaze Hardware Reference Guide www.xilinx.com March 2002
1-800-255-7778

Contents
List of Figures ... xiii

List of Tables .. xvii

Preface: Overview of MicroBlaze Embedded Systems
Architecture Support ... 1
MicroBlaze Soft Processor Core.. 1
Bus Interconnects .. 1
OPB Peripherals... 2

The MicroBlaze Architecture..3
Summary ... 3
Overview ... 3

Features... 3
Instructions .. 3
Registers .. 6

General Purpose Registers (R0-R31)... 6
Special Purpose Registers... 7

Pipeline .. 8
Pipeline Architecture .. 8
Branches.. 8

Load/Store Architecture.. 9
Interrupts and Exceptions.. 10

Interrupts .. 10
Exceptions... 10

MicroBlaze Bus Interfaces..11
Summary ... 11
Overview ... 11

Features... 11
Bus Configurations... 11

Typical Peripheral Placement.. 13
Bit and Byte Labeling .. 19
Core I/O.. 19
Bus Organization... 21

OPB Bus Configuration .. 21
LMB Bus Definition... 24
LMB Bus Operations... 25
Read and Write Data Steering ... 27

Implementation.. 28
Parameterization ... 28

Revision History .. 29
March 2002 www.xilinx.com v
MicroBlaze Hardware Reference Guide 1-800-255-7778

R

OPB Usage in Xilinx FPGAs...31
Summary ... 31
Overview ... 31
Xilinx OPB Usage .. 31

OPB Options... 31
Xilinx OPB Devices ... 32
Specifications for OPB Usage in Xilinx-developed OPB Devices................................... 33

Legacy OPB Devices... 36
Mixed Systems ... 37

OPB Usage Notes... 37
OPB Comparison ... 38
Revision History .. 40

Microprocessor Hardware Specification (MHS) Format41
Summary ... 41
Overview ... 41
MHS Syntax ... 41

Comments... 41
Peripheral Type ... 41
Assignment Type... 41
Ending a Peripheral Definition ... 42
MHS Example .. 42

MHS Peripheral Options ... 44
CONFIGURATION Option ... 44
HW_VER Option ... 44
INSTANCE Option ... 44

MHS Signal Options ... 44
PRIORITY Option.. 44
TYPE Option .. 45

Design Considerations.. 45
Defining Memory Size .. 45
Defining Local Memory Size ... 45
Internal Signals .. 45
Interrupt Signals .. 45
Power Signals... 46

Microprocessor Peripheral Definition Format47
Summary ... 47
Overview ... 47
Load Path... 47

Using Versions... 48
MPD Syntax ... 49

Comments... 49
Format ... 49
MPD Example .. 50

MPD Attribute Naming Conventions.. 50
C_FAMILY Attribute .. 51
C_BASEADDR Attribute.. 51
C_HIGHADDR Attribute... 51
vi www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

R

C_NUM_MASTERS Attribute... 51
C_NUM_SLAVES Attribute .. 52
C_NUM_INTR_INPUTS Attribute ... 52
C_OPB_AWIDTH Attribute .. 52
C_OPB_DWIDTH Attribute .. 52

MPD Signal Naming Conventions.. 52
Global Ports .. 52
Master OPB Ports .. 52
Slave OPB Ports ... 53

MPD Reserved Signal Connections.. 54
Global Ports .. 54
Master OPB Ports .. 54
Slave OPB Ports ... 54
LMB Ports ... 55

MPD Peripheral Options ... 55
STYLE Option .. 55
EDIF Option ... 56
INBYTE or OUTBYTE Option ... 56

MPD Signal Options ... 56
BUS Option... 56
EDGE Option ... 57
ENABLE Option .. 57
ENDIAN Option.. 57
INITIALVAL Option... 57
LEVEL Option.. 57
TYPE Option .. 57

Black-Box Description (BBD) File ... 57
Comments... 58
Format ... 58
BBD Example ... 58

Peripheral Analyze Order (PAO) File .. 59
Comments... 59
Format ... 59
PAO Example... 59

HDL Design Considerations .. 59
Scalable Data path ... 59
Internal Signals .. 60
Interrupt Signals .. 60
3-state (InOut) Signals .. 60

On-Chip Peripheral Bus (OPB) Arbiter Design Specification61
Summary ... 61
Introduction ... 61
OPB Arbiter Overview.. 61

OPB Arbitration Protocol ... 61
OPB Arbiter Design Parameters ... 64

Allowable Parameter Combinations .. 66
OPB Arbiter I/O Signals... 66
Parameter - Port Dependencies ... 67
OPB Arbiter Register Descriptions ... 68

OPB Arbiter Control Register .. 69
OPB Arbiter Priority Registers .. 72
March 2002 www.xilinx.com vii
MicroBlaze Hardware Reference Guide 1-800-255-7778

R

OPB Arbiter Block Diagram ... 73
OPB Slave Interface (IPIF) .. 74
Control Register Logic .. 74
Priority Register Logic .. 74
ARB2BUS Data Mux ... 77
Arbitration Logic ... 78
Park/Lock Logic.. 79
Watchdog Timer .. 84

Design Implementation ... 85
Device Utilization and Performance Benchmarks.. 85

Specification Exceptions .. 85
I/O Signals ... 86
Priority Level Nomenclature ... 86
Grant Outputs .. 86
Bus Parking .. 86
Clock and Power Management ... 86
Scan Test Chains.. 87

Reference Documents.. 87

OPB Simple Interrupt Controller Specification89
Summary ... 89
Overview ... 89

Features... 89
Interrupt Controller Overview.. 89
Simple Interrupt Controller Organization... 92

Programming Model .. 95
Register Data Types and Organization .. 95
IntC Registers... 96
Programming the IntC.. 106

Implementation.. 107
I/O Summary... 107
Parameterization ... 107

OPB External Memory Controller (EMC)111
Summary ... 111
Introduction ... 111
EMC Overview ... 111

Features... 111
EMC Background .. 112

EMC Parameters... 112
EMC I/O Signals .. 114
OPB Timing ... 114
EMC Address Map and Register Descriptions .. 116

EMC Control Register (EMCCR)... 117
EMC Block Diagram .. 117

Memory Data Types and Organization ... 117
Memory Controller Operation .. 120

Basic Timing for Memory... 120
Connecting to Memory ... 123
Example Memory Connections ... 124
viii www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

R

Example 1 ... 124
Example 2 ... 125
Connecting to Intel StrataFlash ... 127
Example 3 ... 128
Example 4 ... 129

OPB Block RAM (BRAM) Specification131
Summary ... 131
Overview ... 131

Features... 131
OPB_BRAM Parameters... 131
OPB_BRAM I/O Signals .. 132
Programming Model .. 132

Supported Memory Sizes ... 132
Register Data Types and Organization .. 133

OPB ZBT Controller Design Specification135
Summary ... 135
Overview ... 135

Features... 135
Operation .. 135
OPB ZBT Controller Parameters .. 135
ZBT Controller I/O Signals... 136
Connecting to Memory ... 137
Address Mapping.. 137
Timing Diagrams... 138

Clock Handling.. 139
Programming Model .. 140

Register Data Types and Organization .. 140
Implementation.. 140

Design Tips... 140

OPB UART Lite Specification...141
Summary ... 141
Overview ... 141

Features... 141
UART Lite Parameters .. 141
UART Lite I/O Signals .. 142
JTAG_UART Address Map and Register Descriptions....................................... 142

Register Data Types and Organization .. 142
Registers of the UART Lite .. 143
The Control register contains the UART Lite control. .. 146
Address Map.. 146

Design Implementation ... 147
Device Utilization and Performance Benchmarks.. 147
March 2002 www.xilinx.com ix
MicroBlaze Hardware Reference Guide 1-800-255-7778

R

OPB JTAG_UART Specification...149
Summary ... 149
Overview ... 149

Features... 149
JTAG_UART Parameters ... 149
JTAG_UART I/O Signals... 150
JTAG_UART Address Map and Register Descriptions....................................... 151

Register Data Types and Organization .. 151
Registers of the JTAG_UART .. 151
The Control register contains the control of the JTAG_UART. 153
Address Map.. 153

Design Implementation ... 154
Device Utilization and Performance Benchmarks.. 154

OPB Serial Peripheral Interface (SPI) Design Specification......155
Summary ... 155
Introduction ... 155

NOTICE .. 155
SPI Device Features... 155
SPI Overview ... 156
SPI Protocol .. 157

SPI Configuration Parameters... 163
SPI Assembly I/O Signals ... 164
Port and Parameter Dependencies... 166
SPI Register Descriptions.. 166

SPI Interrupt Registers.. 167
SPI Assembly Reset Descriptions.. 170
SPI Control Register (CR)... 170
SPI Status Register (SR) .. 172
Data Transmit Register (DTR) ... 173
Data Receive Register (DRR) ... 174
Slave Select Register (SSR) ... 174
Transmit FIFO Occupancy Register (Tx_FIFO_OCY).. 174
Receive FIFO Occupancy Register (Rc_FIFO_OCY) .. 175

Design Implementation ... 175
Target Technology... 175
Device Utilization and Performance Benchmarks.. 175

Flow Description ... 176
SPI Master and Slave Devices without FIFOs ... 176
SPI Master and Slave Devices where Registers/FIFOs are Filled Before

SPI transfer is Started ... 176
SPI Master and Slave Devices with FIFOs where some Initial Data is

Written to FIFOs, SPI transfer is started, Data is written to the FIFOs as
Fast (or faster) than the SPI Transfer.. 177

Platform Generator Considerations .. 177
Specification Exceptions .. 177

Exceptions to the Motorola’s M68HC11-Rev. 4.0 Reference Manual 177
Reference Documents.. 178
x www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

R

OPB General Purpose Input/Output (GPIO) Specification179
Summary ... 179
Overview ... 179

Features... 179
GPIO Organization ... 179

Programming Model .. 180
Register Data Types and Organization .. 180
Registers of the GPIO.. 181
Address Map.. 182

Operation .. 183
GPIO Operation... 183

Implementation.. 183
I/O Summary... 183
MPD File Parameters .. 183
Parameterization ... 184

OPB Timebase WDT Specification ..185
Summary ... 185
Overview ... 185

Features... 185
Timebase WDT Organization .. 185

Programming Model .. 186
Register Data Types and Organization .. 186
Registers of the Timebase / Watchdog Timer .. 187
Address Map.. 188

Operation .. 190
Timebase Operation .. 190
WDT Operation ... 190

Implementation.. 191
I/O Summary... 191
MPD File Parameters .. 192
Device Utilization and Performance Benchmarks.. 192
Parameterization ... 193

OPB Timer/Counter Specification..195
Summary ... 195
Overview ... 195

Features... 195
Timer/Counter Organization.. 195

Programming Model .. 196
Timer Modes .. 196
Register Data Types and Organization .. 196
Registers of the Timer/Counter .. 198
Address Map.. 198
Register Descriptions .. 198

Implementation.. 203
I/O Summary... 203
MPD File Parameters .. 203
Device Utilization and Performance Benchmarks.. 204
Parameterization ... 204
March 2002 www.xilinx.com xi
MicroBlaze Hardware Reference Guide 1-800-255-7778

R

MicroBlaze Endianness ...205
Origin of Endian .. 205
Definitions ... 206
Bit Naming Conventions ... 206
Data Types and Endianness ... 206
VHDL Example .. 208

BRAM – LMB Example... 208
BRAM – OPB Example ... 209

Index .. 213
xii www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Figures
The MicroBlaze Architecture
Figure 1: MicroBlaze Core Block Diagram .. 3
Figure 2: Big-Endian Data Types... 9

MicroBlaze Bus Interfaces
Figure 1: MicroBlaze Core Block Diagram .. 11
Figure 2: MicroBlaze Bus Configurations ... 12
Figure 3: Configuration 1: IOPB+ILMB+DOPB+DLMB .. 13
Figure 4: Configuration 2: IOPB+DOPB+DLMB ... 14
Figure 5: Configuration 3: ILMB+DOPB+DLMB .. 15
Figure 6: Configuration 4: IOPB+ILMB+DOPB... 16
Figure 7: Configuration 5: IOPB+DOPB .. 17
Figure 8: Configuration 6: ILMB+DOPB ... 18
Figure 9: MicroBlaze Big-Endian Data Types... 19
Figure 10: OPB Interconnection (breaking up read and write buses) 22
Figure 11: OPB Interconnection (with multi-ported slave and no bridge) 23
Figure 12: LMB Generic Write Operation.. 26
Figure 13: LMB Generic Read Operation .. 26
Figure 14: LMB Single Cycle Back-to-Back Write Operation .. 26
Figure 15: LMB Single Cycle Back-to-Back Read Operation ... 27
Figure 16: Back-to-Back Mixed Read/Write Operation ... 27

OPB Usage in Xilinx FPGAs
Figure 1: Byte lane usage for aligned transfers .. 33
Figure 2: OPB Interconnect with Mixed Device Types... 37

Microprocessor Peripheral Definition Format
Figure 1: Peripheral Directory Structure .. 48
Figure 2: IOBUF Implementation.. 60

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
Figure 1: OPB Fixed Bus Arbitration - Combinational Grant Outputs 62
Figure 2: OPB Fixed Bus Arbitration - Registered Grant Outputs 62
Figure 3: Continuous Master Bus Request - Fixed Priority,

Combinational Grant Outputs.. 63
Figure 4: Continuous Master Bus Request - Fixed Priority, Registered Grant Outputs 63
Figure 5: Multiple Bus Requests - Fixed Priority Arbitration, Combinational Grant

Outputs.. 64
March 2002 www.xilinx.com vii
MicroBlaze Hardware Reference Guide 1-800-255-7778

R

Figure 6: Multiple Bus Requests - Fixed Priority Arbitration,
Registered Grant Outputs.. 64

Figure 7: OPB Arbiter Top-level Block Diagram ... 73
Figure 8: Fixed Priority Arbitration, Combination Grant Outputs for 4 OPB Masters .. 75
Figure 9: Fixed Priority Arbitration, Registered Grant Outputs for 4 OPB Masters 75
Figure 10: Dynamic Priority Arbitration, Combinational Grant

Outputs- 4 OPB Masters... 76
Figure 11: Dynamic Priority Arbitration, Registered Grant Outputs- 4 OPB Masters ... 76
Figure 12: Priority Register Logic .. 77
Figure 13: Arbitration Logic ... 78
Figure 14: Park/Lock Logic ... 80
Figure 15: Bus Locking - Fixed Priority, Combinational Grant Outputs........................... 81
Figure 16: Bus Locking - Fixed Priority, Registered Grant Outputs................................... 81

Figure 17: Bus Parking - Fixed Priority Arbitration, Combinational Grant Outputs 82
Figure 18: Bus Parking - Dynamic Priority Arbitration, Registered Grant Outputs....... 82
Figure 19: Bus Parking on Master Not Last - Fixed Priority Arbitration,

Combinational Grant Outputs.. 83
Figure 20: Bus Parking on Last Master - Fixed Priority Arbitration,

Combinational Grant Outputs.. 83
Figure 21: OPB Timeout Error.. 84
Figure 22: OPB Timeout Error Suppression.. 84

OPB Simple Interrupt Controller Specification
Figure 1: Schemes for Generating Edges ... 92
Figure 2: Interrupt Controller Organization ... 94
Figure 3: Data Types .. 95
Figure 4: OPB-based Register Offsets and Alignment ... 96

OPB External Memory Controller (EMC)
Figure 1: Basic OPB Data Transfer.. 115
Figure 2: OPB Data Transfer with Continuous Master Request 115
Figure 3: OPB Full-Word Read/Write ... 115
Figure 4: Big-Endian Data Types... 118
Figure 5: EMC Memory Control Block Diagram.. 119
Figure 6: EMC Memory Control State Diagram ... 120
Figure 7: Timing Waveform for SRAM Read Cycle .. 120
Figure 8: Timing Waveform for SRAM Write Cycle ... 121
Figure 9: Waveform for Page-mode and Standard Word/byte Read Operation 122
Figure 10: Waveform for Write Operations ... 122

OPB Block RAM (BRAM) Specification
Figure 1: Big-Endian Data Types... 133
viii www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

R

OPB ZBT Controller Design Specification
Figure 1: Read Cycle .. 138
Figure 2: Write Cycle.. 138
Figure 3: Clock Synchronization ... 139
Figure 4: Big-Endian Data Types... 140

OPB UART Lite Specification
Figure 1: Big-Endian Data Types... 143
Figure 2: UART Lite Register Set .. 143

OPB JTAG_UART Specification
Figure 1: Big-Endian Data Types... 151
Figure 2: JTAG_UART Register Set.. 151

OPB Serial Peripheral Interface (SPI) Design Specification
Figure 1: SPI Assembly Top-level Block Diagram .. 157
Figure 2: Multi-master Configuration Block Diagram.. 158
Figure 3: Data Transfer on the SPI Bus with CPHA=0 ... 159
Figure 4: Data Transfer on SPI Bus with CPHA=1 .. 159

OPB General Purpose Input/Output (GPIO) Specification
Figure 1: GPIO Block Diagram .. 179
Figure 2: Big-Endian Data Types... 181
Figure 3: GPIO Register Set ... 181

OPB Timebase WDT Specification
Figure 1: Timebase/WDT Organization ... 185
Figure 2: Big-Endian Data Types... 187
Figure 3: TBWDT Register Set... 187
Figure 4: WDT State Diagram .. 191

OPB Timer/Counter Specification
Figure 1: Timer/Counter Organization... 195
Figure 2: Big-Endian Data Types... 197
Figure 3: TC Register Set... 198
March 2002 www.xilinx.com ix
MicroBlaze Hardware Reference Guide 1-800-255-7778

R

x www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Tables
The MicroBlaze Architecture
Table 1: Instruction Set Nomenclature .. 4
Table 2: MicroBlaze Instruction Set Summary .. 4
Table 3: General Purpose Registers (R0-R31)... 6
Table 4: Program Counter (PC) ... 7
Table 5: Machine Status Register (MSR)... 7

MicroBlaze Bus Interfaces
Table 1: MicroBlaze Bus Configurations .. 12
Table 2: Summary of MicroBlaze Core I/O... 20
Table 3: LMB Bus Signals .. 24
Table 4: Valid Values for Byte_Enable[0:3] .. 24
Table 5: Read Data Steering (load to Register rD) .. 28
Table 6: Write Data Steering (store from Register rD) ... 28

OPB Usage in Xilinx FPGAs
Table 1: Summary of OPB Master-only I/O.. 34
Table 2: Summary of OPB Slave-only I/O .. 34
Table 3: Summary of OPB Master/Slave Device I/O .. 35
Table 4: Comparison of buses used in Xilinx embedded processor systems................... 39

Microprocessor Hardware Specification (MHS) Format
Table 1: MHS Peripheral Options .. 44
Table 2: MHS Signal Options ... 44
Table 3: Local Memory Sizes ... 45

Microprocessor Peripheral Definition Format
Table 1: Reserved Peripheral Attribute Names ... 51
Table 2: MPD Peripheral Options .. 55
Table 3: MPD Signal Options ... 56

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
Table 1: OPB Arbiter Design Parameters .. 65
Table 2: OPB Arbiter I/O Signals.. 66
Table 3: Parameter-Port Dependencies.. 67
Table 4: OPB Arbiter Registers ... 69
Table 5: OPB Arbiter Control Register .. 69
March 2002 www.xilinx.com xi
MicroBlaze Hardware Reference Guide 1-800-255-7778

R

Table 6: OPB Arbiter Control Register Bit Definitions.. 70
Table 7: OPB Arbiter OPB Arbiter LVLn Priority Register ... 72
Table 8: OPB Arbiter LVLn Priority Register Bit Definitions .. 72
Table 9: OPB Arbiter FPGA Performance and Resource Utilization

Benchmarks (Virtex-II -5) ... 85
Table 10: OPB Arbiter Register Block Configuration... 85
Table 11: OPB Arbiter Device Capabilities Bit Definitions .. 85
Table 12: Xilinx OPB Arbiter I/O Signal Variations ... 86

OPB Simple Interrupt Controller Specification
Table 1: IntC Registers and Base Address Offsets .. 97
Table 2: Interrupt Status Register ... 98
Table 3: Interrupt Pending Register ... 99
Table 4: Interrupt Enable Register ... 100
Table 5: Interrupt Acknowledge Register ... 101
Table 6: Set Interrupt Enables ... 102
Table 7: Clear Interrupt Enables ... 103
Table 8: Interrupt Vector Register .. 104
Table 9: Master Enable Register ... 105
Table 10: Core IntC I/O Summary .. 107
Table 11: OPB IntC I/O Summary .. 107
Table 12: Generics (Parameters) Common to all IntC Instantiations 108
Table 13: Generics (Parameters) for an OPB IntC ... 109

OPB External Memory Controller (EMC)
Table 1: EMC Parameters ... 112
Table 2: EMC I/O Signals ... 114
Table 3: EMC Memory Banks.. 116
Table 4: EMC Control Registers.. 116
Table 5: EMC Control Register Bit Definitions ... 117
Table 6: EMC Control Register Bit Functionality.. 117
Table 7: SRAM Parameter Description ... 121
Table 8: StrataFlash Parameter Description.. 122
Table 9: Variables used in Defining Memory Subsystem... 124
Table 10: Memory Controller to Memory Interconnect ... 124
Table 11: Variables for Simple SRAM Example.. 124
Table 12: Connection to 32-bit Memory using 2 IDT71V416S Parts 125
Table 13: Variables for Two Banks of SRAM .. 125
Table 14: Connection to 64-bit Memory using 8 IDT71V416S Parts 126
Table 15: Variables for StrataFlash (x16 mode) Example ... 128
Table 16: Connection to 32-bit Memory using 2 StrataFlash Parts................................... 128
Table 17: Variables for StrataFlash (x8 mode) Example ... 129
Table 18: Connection to 32-bit Memory using 4 StrataFlash Parts................................... 129
xii www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

R

OPB Block RAM (BRAM) Specification
Table 1: OPB_BRAM Parameters.. 131
Table 2: OPB_BRAM I/O Signals ... 132

OPB ZBT Controller Design Specification
Table 1: ZBT Controller Parameters ... 135
Table 2: ZBT COntroller I/O Signals ... 136
Table 3: Signal Connection .. 137

OPB UART Lite Specification
Table 1: UART Lite Parameters ... 141

Table 2: UART Lite I/O Signals .. 142
Table 3: Status Register .. 144
Table 4: Control Register (CTRL_REG)... 146
Table 5: OPB UART Lite Performance and Resource Utilization

Benchmarks (Virtex-II 2V1000-5) .. 147

OPB JTAG_UART Specification
Table 1: JTAG_UART Parameters .. 149
Table 2: JTAG_UART I/O Signals .. 150
Table 3: Status Register .. 152
Table 4: Control Register (CTRL_REG)... 153
Table 5: OPB JTAG_UART Performance and Resource Utilization

Benchmarks (Virtex-II 2V1000-5) .. 154

OPB Serial Peripheral Interface (SPI) Design Specification
Table 1: Parameters to Configure the SPI Assembly .. 163
Table 2: SPI Assembly I/O Signals... 164
Table 3: Port and Parameter Dependencies for Slave Attachment 166
Table 4: SPI Assembly Registers and Offset from BAR .. 167
Table 5: Interrupt Register Bit Definitions (Bit assignment assumes 32-bit bus) 168
Table 6: Interrupt Register Bit Definitions (Bit assignment assumes 32-bit bus) 169
Table 7: SPI Control Register Bit Definitions (Bit assignment assumes 32-bit bus).... 171
Table 8: SPI Status Register Bit Definitions (Bit assignment assumes 32-bit bus) 172
Table 9: SPI Data Transmit Register Bit Definitions

(Bit assignment assumes 32-bit bus) .. 174
Table 10: SPI Data Receive Register Bit Definitions

(Bit assignment assumes 32-bit bus) .. 174
Table 11: SPI Slave Select Address Register Bits

(Bit assignment assumes 32-bit bus) .. 174
Table 12: Transmit FIFO Occupancy Register Bits

(Bit assignment assumes 32-bit bus) .. 175
Table 13: Receive FIFO Occupancy Register Bits

(Bit assignment assumes 32-bit bus) .. 175
March 2002 www.xilinx.com xiii
MicroBlaze Hardware Reference Guide 1-800-255-7778

R

Table 14: SPI Assembly FPGA Performance and Resource Utilization
Benchmarks (Virtex-II -5) ... 176

OPB General Purpose Input/Output (GPIO) Specification
Table 1: GPIO Configuration and Access Type ... 180
Table 2: GPIO Register Address Map (32-bit OPB) .. 180
Table 3: GPIO Register Address Map (32-bit OPB) .. 182
Table 4: GPIO_DATA Register ... 182
Table 5: GPIO_TRI Register .. 182
Table 6: Summary of GPIO I/O (32b OPB interface) .. 183
Table 7: MPD Parameters ... 183

OPB Timebase WDT Specification
Table 1: TBWDT Configuration and Access Type .. 186
Table 2: TBWDT Register Address Map ... 186
Table 3: TBWDT Register Address Map ... 188
Table 4: Control/Status Register 0 (TCSR0).. 188
Table 5: Control/Status Register 1 (TCSR1).. 190
Table 6: Summary of Timebase WDT Core I/O ... 191
Table 7: MPD Parameters ... 192
Table 8: OPB Timebase/WDT Performance and Resource Utilization

Benchmarks (Virtex-II 2V1000-5) .. 192

OPB Timer/Counter Specification
Table 1: TC Configuration and Access Type .. 196
Table 2: TC Register Address Map (32b bus interface) .. 197
Table 3: TC Register Address Map (32b bus interface) .. 198
Table 4: Control/Status Register 0 (TCSR0).. 199
Table 5: Control/Status Register 1 (TCSR1).. 201
Table 6: Summary of Timer Core I/O... 203
Table 7: MPD Parameters ... 203
Table 8: OPB Timer/Counter Performance and Resource Utilization

Benchmarks (Virtex-II 2V1000-5) .. 204
xiv www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

R

Preface

Overview of MicroBlaze Embedded
Systems

An embedded system built around MicroBlaze™ is comprised of the following:

• MicroBlaze soft processor core
• On-chip block RAM
• Standard bus interconnects
• On-chip Peripheral Bus (OPB) peripherals.

A MicroBlaze system can range from a processor core with a minimum of local memory to
a large system with many MicroBlaze processors, sizable external memory, and numerous
OPB peripherals. MicroBlaze applications can range from software-based simple state
machines to complex controllers for Internet appliances or other embedded applications.

Architecture Support
You can use MicroBlaze systems in the following FPGA devices:

• Virtex™/Virtex-E/Virtex-II/Virtex-II PRO
• Spartan-II™

MicroBlaze Soft Processor Core
The MicroBlaze soft processor core is central to the MicroBlaze embedded system. This
fast, efficient, 32-bit RISC processor includes the following features:

• Orthogonal instruction set
• 32 general purpose registers
• Separate instruction and data buses (Harvard architecture)
• Built-in interfaces to fast on-chip memory and to IBM’s industry-standard On-chip

Peripheral Bus (OPB)
• Implementations in Virtex-II and later devices support hardware multiply

Bus Interconnects
The data side and instruction side bus interfaces each have an interface to local memory
(called the Local Memory Bus, or LMB) and an interface to IBM’s On-chip Peripheral Bus
(OPB). You can build systems that strictly adhere to a Harvard architecture, or, to share
resources, you can use a single OPB in conjunction with a bus arbiter (provided as a
MicroBlaze peripheral). Since system requirements differ, the MicroBlaze core is provided
in six variations that supply only the LMB and OPB buses needed by your application.
March 2002 www.xilinx.com 1
MicroBlaze Hardware Reference Guide 1-800-255-7778

Preface: Overview of MicroBlaze Embedded Systems
R

The LMB bus provides guaranteed single-cycle access to on-chip block RAM. This simple,
efficient, single-master bus protocol is ideal for interfacing to fast local memory. The OPB
is a 32-bit wide multi-master bus that is ideal for connecting peripherals and external
memory to the MicroBlaze processor core.

OPB Peripherals
OPB peripherals complete the MicroBlaze hardware system and provide functions such as
the following:

• Watchdog timer
• General purpose timer/counters
• Interrupt controller
• UARTs
• General purpose I/O

• Memory controllers.

In addition, you can define and add peripherals for custom functions, or as an interface to
a design residing in the FPGA.
2 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Summary This document describes the architecture for the MicroBlaze™ 32-bit soft processor core.

Overview The MicroBlaze embedded soft core is a reduced instruction set computer (RISC) optimized for
implementation in Xilinx field programmable gate arrays (FPGAs). See Figure 1 for a block
diagram depicting the MicroBlaze core.

Features
The MicroBlaze embedded soft core includes the following features:

• Thirty-two 32-bit general purpose registers

• 32-bit instruction word with three operands and two addressing modes

• Separate 32-bit instruction and data buses that conform to IBM’s OPB (On-chip Peripheral
Bus) specification

• Separate 32-bit instruction and data buses with direct connection to on-chip block RAM
through a LMB (Local Memory Bus)

• 32-bit address bus

• Single issue pipeline

• Hardware multiplier (in Virtex-II and subsequent devices)

Xilinx Embedded Processors: MicroBlaze

March 2002

The MicroBlaze Architecture
R

Figure 1: MicroBlaze Core Block Diagram

Data-sideInstruction-side

DLMB

DOPB

ILMB

IOPB

bus interface bus interface

Instruction
Buffer

Program
Counter

Register File
32 X 32b

Add/Sub

Shift/Logical

Multiply

Instruction
Decode

Bus
IF

Bus
IF
www.xilinx.com 3
MicroBlaze Hardware Reference Guide 1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

The MicroBlaze Architecture
R

Instructions All MicroBlaze instructions are 32 bits and are defined as either Type A or Type B. Type A
instructions have up to two source register operands and one destination register operand.
Type B instructions have one source register and a 16-bit immediate operand (which can be
extended to 32 bits by preceding the Type B instruction with an IMM instruction). Type B
instructions have a single destination register operand. Instructions are provided in the
following functional categories: arithmetic, logical, branch, load/store, and special. Table 2 lists
the MicroBlaze instruction set. Refer to the MicroBlaze Instruction Set Architecture document
for more information on these instructions. Table 1 describes the instruction set nomenclature
used in the semantics of each instruction.

Table 1: Instruction Set Nomenclature

Symbol Description

Ra R0 - R31, General Purpose Register, source operand a

Rb R0 - R31, General Purpose Register, source operand b

Rd R0 - R31, General Purpose Register, destination operand,

C Carry flag, MSR[29]

Sa Special Purpose Register, source operand

Sd Special Purpose Register, destination operand

s(x) Sign extend argument x to 32-bit value

*Addr Memory contents at location Addr (data-size aligned)

Table 2: MicroBlaze Instruction Set Summary

Type A 0-5 6-10 11-15 16-20 21-31

Type B 0-5 6-10 11-15 16-31 Semantics

ADD Rd,Ra,Rb 000000 Rd Ra Rb 00000000000 Rd := Rb + Ra

RSUB Rd,Ra,Rb 000001 Rd Ra Rb 00000000000 Rd := Rb + Ra + 1

ADDC Rd,Ra,Rb 000010 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

RSUBC Rd,Ra,Rb 000011 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

ADDK Rd,Ra,Rb 000100 Rd Ra Rb 00000000000 Rd := Rb + Ra

RSUBK Rd,Ra,Rb 000101 Rd Ra Rb 00000000000 Rd := Rb + Ra + 1

ADDKC Rd,Ra,Rb 000110 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

RSUBKC Rd,Ra,Rb 000111 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

ADDI Rd,Ra,Imm 001000 Rd Ra Imm Rd := s(Imm) + Ra

RSUBI Rd,Ra,Imm 001001 Rd Ra Imm Rd := s(Imm) + Ra + 1

ADDIC Rd,Ra,Imm 001010 Rd Ra Imm Rd := s(Imm) + Ra + C

RSUBIC Rd,Ra,Imm 001011 Rd Ra Imm Rd := s(Imm) + Ra + C

ADDIK Rd,Ra,Imm 001100 Rd Ra Imm Rd := s(Imm) + Ra

RSUBIK Rd,Ra,Imm 001101 Rd Ra Imm Rd := s(Imm) + Ra + 1

ADDIKC Rd,Ra,Imm 001110 Rd Ra Imm Rd := s(Imm) + Ra + C

RSUBIKC Rd,Ra,Imm 001111 Rd Ra Imm Rd := s(Imm) + Ra + C

MUL Rd,Ra,Rb 010000 Rd Ra Rb 00000000000 Rd := Ra * Rb

MULI Rd,Ra,Imm 011000 Rd Ra Imm Rd := Ra * s(Imm)

OR Rd,Ra,Rb 100000 Rd Ra Rb 00000000000 Rd := Ra or Rb

AND Rd,Ra,Rb 100001 Rd Ra Rb 00000000000 Rd := Ra and Rb
4 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

The MicroBlaze Architecture
R

XOR Rd,Ra,Rb 100010 Rd Ra Rb 00000000000 Rd := Ra xor Rb

ANDN Rd,Ra,Rb 100011 Rd Ra Rb 00000000000 Rd := Ra and Rb

SRA Rd,Ra 100100 Rd Ra 0000000000000001 Rd := Ra[0], (Ra >> 1); C := Ra[31]

SRC Rd,Ra 100100 Rd Ra 0000000000100001 Rd := C, (Ra >> 1); C := Ra[31]

SRL Rd,Ra 100100 Rd Ra 0000000001000001 Rd := 0, (Ra >> 1); C := Ra[31]

SEXT8 Rd,Ra 100100 Rd Ra 0000000001100000 Rd[0:23] := Ra[24]; Rd[24:31] := Ra[24:31]

SEXT16 Rd,Ra 100100 Rd Ra 0000000001100001 Rd[0:15] := Ra[16]; Rd[16:31] := Ra[16:31]

MTS Sd,Ra 100101 00000 Ra 110000000000000d Sd := Ra , where S1 is MSR

MFS Rd,Sa 100101 Rd 00000 100000000000000a Rd := Sa , where S0 is PC and S1 is MSR

BR Rb 100110 00000 00000 Rb 00000000000 PC := PC + Rb

BRD Rb 100110 00000 10000 Rb 00000000000 PC := PC + Rb

BRLD Rd,Rb 100110 Rd 10100 Rb 00000000000 PC := PC + Rb; Rd := PC

BRA Rb 100110 00000 01000 Rb 00000000000 PC := Rb

BRAD Rb 100110 00000 11000 Rb 00000000000 PC := Rb

BRALD Rd,Rb 100110 Rd 11100 Rb 00000000000 PC := Rb; Rd := PC

BRK Rd,Rb 100110 Rd 01100 Rb 00000000000 PC := Rb; Rd := PC; MSR[BIP] := 1

BEQ Ra,Rb 100111 00000 Ra Rb 00000000000 if Ra = 0: PC := PC + Rb

BNE Ra,Rb 100111 00001 Ra Rb 00000000000 if Ra /= 0: PC := PC + Rb

BLT Ra,Rb 100111 00010 Ra Rb 00000000000 if Ra < 0: PC := PC + Rb

BLE Ra,Rb 100111 00011 Ra Rb 00000000000 if Ra <= 0: PC := PC + Rb

BGT Ra,Rb 100111 00100 Ra Rb 00000000000 if Ra > 0: PC := PC + Rb

BGE Ra,Rb 100111 00101 Ra Rb 00000000000 if Ra >= 0: PC := PC + Rb

BEQD Ra,Rb 100111 10000 Ra Rb 00000000000 if Ra = 0: PC := PC + Rb

BNED Ra,Rb 100111 10001 Ra Rb 00000000000 if Ra /= 0: PC := PC + Rb

BLTD Ra,Rb 100111 10010 Ra Rb 00000000000 if Ra < 0: PC := PC + Rb

BLED Ra,Rb 100111 10011 Ra Rb 00000000000 if Ra <= 0: PC := PC + Rb

BGTD Ra,Rb 100111 10100 Ra Rb 00000000000 if Ra > 0: PC := PC + Rb

BGED Ra,Rb 100111 10101 Ra Rb 00000000000 if Ra >= 0: PC := PC + Rb

ORI Rd,Ra,Imm 101000 Rd Ra Imm Rd := Ra or s(Imm)

ANDI Rd,Ra,Imm 101001 Rd Ra Imm Rd := Ra and s(Imm)

XORI Rd,Ra,Imm 101010 Rd Ra Imm Rd := Ra xor s(Imm)

ANDNI Rd,Ra,Imm 101011 Rd Ra Imm Rd := Ra and s(Imm)

IMM Imm 101100 00000 00000 Imm Imm[0:15] := Imm

RTSD Ra,Imm 101101 10000 Ra Imm PC := Ra + s(Imm)

RTID Ra,Imm 101101 10001 Ra Imm PC := Ra + s(Imm); MSR[IE] := 1

RTBD Ra,Imm 101101 10010 Ra Imm PC := Ra + s(Imm); MSR[BIP] := 0

BRID Imm 101110 00000 10000 Imm PC := PC + s(Imm)

BRLID Rd,Imm 101110 Rd 10100 Imm PC := PC + s(Imm); Rd := PC

BRAI Imm 101110 00000 01000 Imm PC := s(Imm)

BRAID Imm 101110 00000 11000 Imm PC := s(Imm)

BRALID Rd,Imm 101110 Rd 11100 Imm PC := s(Imm); Rd := PC

BRKI Rd,Imm 101110 Rd 01100 Imm PC := s(Imm); Rd := PC; MSR[BIP] := 1

Table 2: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31

Type B 0-5 6-10 11-15 16-31 Semantics
March 2002 www.xilinx.com 5
MicroBlaze Hardware Reference Guide 1-800-255-7778

The MicroBlaze Architecture
R

Registers MicroBlaze is a fully orthogonal architecture. It has thirty-two 32-bit general purpose registers
and two 32-bit special purpose registers.

General Purpose Registers (R0-R31)
The thirty-two 32-bit General Purpose Registers are numbered 0 through 31. R0 is defined to
always have the value of zero. Anything written to R0 is discarded, and zero is always read.

BEQI Ra,Imm 101111 00000 Ra Imm if Ra = 0: PC := PC + s(Imm)

BNEI Ra,Imm 101111 00001 Ra Imm if Ra /= 0: PC := PC + s(Imm)

BLTI Ra,Imm 101111 00010 Ra Imm if Ra < 0: PC := PC + s(Imm)

BLEI Ra,Imm 101111 00011 Ra Imm if Ra <= 0: PC := PC + s(Imm)

BGTI Ra,Imm 101111 00100 Ra Imm if Ra > 0: PC := PC + s(Imm)

BGEI Ra,Imm 101111 00101 Ra Imm if Ra >= 0: PC := PC + s(Imm)

BEQID Ra,Imm 101111 10000 Ra Imm if Ra = 0: PC := PC + s(Imm)

BNEID Ra,Imm 101111 10001 Ra Imm if Ra /= 0: PC := PC + s(Imm)

BLTID Ra,Imm 101111 10010 Ra Imm if Ra < 0: PC := PC + s(Imm)

BLEID Ra,Imm 101111 10011 Ra Imm if Ra <= 0: PC := PC + s(Imm)

BGTID Ra,Imm 101111 10100 Ra Imm if Ra > 0: PC := PC + s(Imm)

BGEID Ra,Imm 101111 10101 Ra Imm if Ra >= 0: PC := PC + s(Imm)

LBU Rd,Ra,Rb 110000 Rd Ra Rb 00000000000 Addr := Ra + Rb; Rd[0:23] := 0, Rd[24:31] := *Addr

LHU Rd,Ra,Rb 110001 Rd Ra Rb 00000000000 Addr := Ra + Rb; Rd[0:15] := 0, Rd[16:31] := *Addr

LW Rd,Ra,Rb 110010 Rd Ra Rb 00000000000 Addr := Ra + Rb; Rd := *Addr

SB Rd,Ra,Rb 110100 Rd Ra Rb 00000000000 Addr := Ra + Rb; *Addr := Rd[24:31]

SH Rd,Ra,Rb 110101 Rd Ra Rb 00000000000 Addr := Ra + Rb; *Addr := Rd[16:31]

SW Rd,Ra,Rb 110110 Rd Ra Rb 00000000000 Addr := Ra + Rb; *Addr := Rd

LBUI Rd,Ra,Imm 111000 Rd Ra Imm Addr := Ra + s(Imm); Rd[0:23] := 0, Rd[24:31] := *Addr

LHUI Rd,Ra,Imm 111001 Rd Ra Imm Addr := Ra + s(Imm); Rd[0:15] := 0, Rd[16:31] := *Addr

LWI Rd,Ra,Imm 111010 Rd Ra Imm Addr := Ra + s(Imm); Rd := *Addr

SBI Rd,Ra,Imm 111100 Rd Ra Imm Addr := Ra + s(Imm); *Addr := Rd[24:31]

SHI Rd,Ra,Imm 111101 Rd Ra Imm Addr := Ra + s(Imm); *Addr := Rd[16:31]

SWI Rd,Ra,Imm 111110 Rd Ra Imm Addr := Ra + s(Imm); *Addr := Rd

Table 2: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31

Type B 0-5 6-10 11-15 16-31 Semantics

0 31

↑
R0-R31

Table 3: General Purpose Registers (R0-R31)

Bits Name Description Reset Value

0:31 R0 through
R31

General Purpose Register

R0 through R31 are 32-bit general
purpose registers. R0 is always zero.

0x00000000
6 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

The MicroBlaze Architecture
R

Special Purpose Registers

Program Counter (PC)

The Program Counter is the 32-bit address of the next instruction word to be fetched. It can be
read by accessing RPC with an MFS instruction. It cannot be written to using an MTS
instruction.

Machine Status Register (MSR)

The Machine Status Register contains the carry flag and enables for interrupts and buslock. It
can be read by accessing RMSR with an MFS instruction. When reading the MSR, bit 29 is
replicated in bit 0 as the carry copy. MSR can be written to with an MTS instruction. Writes to
MSR are delayed one clock cycle. When writing to MSR using MTS, the value written takes
effect one clock cycle after executing the MTS instruction. Any value written to bit 0 is
discarded.

0 31

↑
PC

Table 4: Program Counter (PC)

Bits Name Description Reset Value

0:31 PC Program Counter

Address of next instruction to fetch

0x00000000

0 1 28 29 30 31

↑ ↑ ↑ ↑ ↑ ↑
CC Reserved BIP C IE BE

Table 5: Machine Status Register (MSR)

Bits Name Description Reset Value

0 CC Arithmetic Carry Copy

Copy of the Arithmetic Carry (bit 29).
Read only.

0

1:27 Reserved

28 BIP Break in Progress

0 No Break in Progress
1 Break in Progress

Source of break can be software break
instruction or hardware break from
Ext_Brk or Ext_NM_Brk pin.

0

March 2002 www.xilinx.com 7
MicroBlaze Hardware Reference Guide 1-800-255-7778

The MicroBlaze Architecture
R

Pipeline This section describes the MicroBlaze pipeline architecture.

Pipeline Architecture
The MicroBlaze pipeline is a parallel pipeline, divided into three stages:

• Fetch

• Decode

• Execute

In general, each stage takes one clock cycle to complete. Consequently, it takes three clock
cycles (ignoring any delays or stalls) for the instruction to complete.

In the MicroBlaze parallel pipeline, each stage is active on each clock cycle. Three instructions
can be executed simultaneously, one at each of the three pipeline stages. Even though it takes
three clock cycles for each instruction to complete, each pipeline stage can work on other
instructions in parallel with and in advance of the instruction that is completing. Within one clock
cycle, one new instruction is fetched, another is decoded, and a third is completed. The pipeline
effectively completes one instruction per clock cycle.

29 C Arithmetic Carry

0 No Carry (Borrow)
1 Carry (No Borrow)

0

30 IE Interrupt Enable

0 Interrupts disabled
1 Interrupts enabled

0

31 BE Buslock Enable

0 Buslock disabled on data-side OPB
1 Buslock enabled on data-side OPB

Buslock Enable does not affect
operation of ILMB, DLMB, or IOPB.

0

Table 5: Machine Status Register (MSR) (Continued)

Bits Name Description Reset Value

cycle 1 cycle 2 cycle 3

Fetch Decode Execute

cycle 1 cycle 2 cycle 3 cycle4 cycle5

instruction 1 Fetch Decode Execute

instruction 2 Fetch Decode Execute

instruction 3 Fetch Decode Execute
8 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

The MicroBlaze Architecture
R

Branches
Similar to other processor pipelines, the MicroBlaze pipeline can originate control hazards that
affect the pipeline execution rate. When an instruction that changes the control flow of a
program (branches) is executed and completed, and eventually changes the program flow
(taken branches), the previous pipeline work becomes useless. When the processor executes
a taken branch, the instructions in the fetch and decode stages are not the correct ones, and
must be discarded or flushed from the pipeline. The processor must refill the pipeline with the
correct instructions, taking three clock cycles for a taken branch, adding a latency of two cycles
for refilling the pipeline.

MicroBlaze uses two techniques to reduce the penalty of taken branches. One technique is to
use delay slots and another is use of a history buffer.

Delay Slots

When the processor executes a taken branch and flushes the pipeline, it takes three clock
cycles to refill the pipeline. By allowing the instruction following a branch to complete, this
penalty is reduced. Instead of flushing the instructions in both the fetch and decode stages,
only the fetch stage is discarded and the instruction in the decode stage is allowed to complete.
This effectively produces a delayed branch or delay slot. Since the work done on the delay slot
instruction is not discarded, this technique effectively reduces the branch penalty from two
clock cycles to one. Branch instructions that allow execution of the subsequent instruction in
the delay slot are denoted by a D in the instruction mnemonic. For example, the BNE
instruction does not execute the subsequent instruction in the delay slot, whereas BNED does
execute the next instruction in the delay slot before control is transferred to the branch location.

Load/Store
Architecture

MicroBlaze can access memory in the following three data sizes:

• Byte (8 bits)

• Halfword (16 bits)

• Word (32 bits)

Memory accesses are always data-size aligned. For halfword accesses, the least significant
address bit is forced to 0. Similarly, for word accesses, the two least significant address bits are
forced to 0.

MicroBlaze is a Big-Endian processor and uses the Big-Endian address and labeling
conventions shown in Figure 2 when accessing memory. The following abbreviations are used:

• MSByte: Most Significant Byte

• LSByte: Least Significant Byte

• MSBit: Most Significant Bit

• LSBit: Least Significant Bit
March 2002 www.xilinx.com 9
MicroBlaze Hardware Reference Guide 1-800-255-7778

The MicroBlaze Architecture
R

Interrupts,
Exceptions, and
Breaks

When a Reset or a Debug_Rst occurs, MicroBlaze starts executing from address 0. PC and
MSR are reset to the default values. When an Ext_Brk occurs, MicroBlaze starts executing
from address 0x18 and stores the return address in register 16. An Ext_Brk is not executed if
the BIP bit in MSR is active (equal to 1). When an Ext_NM_Brk occurs, MicroBlaze starts
executing from address 0x18 and stores the return address in register 16. This occurs
independent of the BIP bit value in MSR.

Interrupts
When an interrupt occurs, MicroBlaze stops the current execution to handle the interrupt
request. MicroBlaze branches to address 0x00000010 and uses the General Purpose Register
14 to store the address of the instruction that was to be executed when the interrupt occurred.
It also disables future interrupts by clearing the Interrupt Enable flag in the Machine Status
Register (setting bit 30 to 0 in MSR). The instruction located at the address where the current
PC points to is not executed. Interrupts do not occur if the BIP bit in the MSR register is active
(equal to 1).

Equivalent Pseudocode

r14 ← PC
PC ← 0x00000010
MSR[IE] ← 0

Figure 2: Big-Endian Data Types

n n+1 n+2 n+3

0 1 2 3

MSByte LSByte

0 31

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n n+1

0 1

MSByte LSByte

0 15

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n

0

MSByte

0 7

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

Byte

Halfword

Word
10 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

The MicroBlaze Architecture
R

Exceptions
When an exception occurs, MicroBlaze stops the current execution to handle the exception.
MicroBlaze branches to address 0x00000008 and uses the General Purpose Register 17 to
store the address of the instruction that was to be executed when the exception occurred. The
instruction located at the address where the current PC points to is not executed.

Equivalent Pseudocode

r17 ← PC
PC ← 0x00000008

Breaks
There are two kinds of breaks:

• Software (internal) breaks

• Hardware (external) breaks

Software Breaks

To perform a software break, use the brk and brki instructions. Refer to the Instruction Set
Architecture documentation for more information on software breaks.

Hardware Breaks

Hardware breaks are performed by asserting the external break signal. When a hardware
break occurs, MicroBlaze stops the current execution to handle the break. MicroBlaze
branches to address 0x00000018 and uses the General Purpose Register 16 to store the
address of the instruction that was to be executed when the break occurred. MicroBlaze also
disables future breaks by setting the Break In Progress (BIP) flag in the Machine Status
Register (setting bit 28 to 1 in MSR). The instruction located at the address where the current
PC points to is not executed.

Hardware breaks are only handled when there is no break in progress (the Break In Progress
flag is set to 0). The Break In Progress flag has higher precedence than the Interrupt Enabled
flag. While no interrupts are handled when the Break In Progress flag is set, breaks that occur
when interrupts are disabled are handled immediately. However, it is important to note that non-
maskable hardware breaks are always handled immediately.

Equivalent Pseudocode1

r16 ← PC
PC ← 0x00000018
MSR[IE] ← 1
March 2002 www.xilinx.com 11
MicroBlaze Hardware Reference Guide 1-800-255-7778

The MicroBlaze Architecture
R

12 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Summary This document describes the MicroBlaze™ Local Memory Bus (LMB) and On-chip Peripheral
Bus (OPB) interfaces.

Overview The MicroBlaze core is organized as a Harvard architecture with separate bus interface units
for data accesses and instruction accesses. Each bus interface unit is further split into a Local
Memory Bus (LMB) and IBM’s On-chip Peripheral Bus (OPB). The LMB provides single-cycle
access to on-chip dual-port block RAM. The OPB interface provides a connection to both on-
and off-chip peripherals and memory. .

Features
The MicroBlaze bus interfaces include the following features:

• OPB V2.0 bus interface with byte-enable support (see IBM’s 64-Bit On-Chip Peripheral
Bus, Architectural Specifications, Version 2.0)

• LMB provides simple synchronous protocol for efficient block RAM transfers

• LMB provides guaranteed performance of 125 MHz for local memory subsystem

Bus
Configurations

The block diagram in Figure 1 depicts the MicroBlaze core with the bus interfaces defined as
follows:

DOPB: Data interface, On-chip Peripheral Bus
DLMB: Data interface, Local Memory Bus (BRAM only)
IOPB: Instruction interface, On-chip Peripheral Bus
ILMB: Instruction interface, Local Memory Bus (BRAM only)
Core: Miscellaneous signals (Clock, Reset, Interrupt)

Xilinx Embedded Processors: MicroBlaze

March 2002

MicroBlaze Bus Interfaces
R

Figure 1: MicroBlaze Core Block Diagram

Data-sideInstruction-side

DOPB

DLMB

IOPB

ILMB

bus interface bus interface

Instruction
Buffer

Program
Counter

Register File
32 X 32b

Add/Sub

Shift/Logical

Multiply

Instruction
Decode

Bus
IF

Bus
IF
March 2002 www.xilinx.com 13
MicroBlaze Hardware Reference Guide 1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

MicroBlaze Bus Interfaces
R

MicroBlaze bus interfaces are available in six configurations, as shown in the following figure.

The optimal configuration for your application depends on code size and data spaces, and if
you require fast access to internal block RAM. The performance implications and supported
memory models for each configuration is shown in the following table:

1. ILMB memory can be debugged via a software resident monitor if the second port of the dual-ported
ILMB BRAM is connected to an OPB BRAM memory controller. See Figure 6 and Figure 8.

Figure 2: MicroBlaze Bus Configurations

DOPB

DLMB

IOPB

ILMB

DOPB

DLMB

IOPB DOPB

DLMBILMB

DOPBIOPB

ILMB

DOPBIOPB DOPB

ILMB

1 2 3

4 5 6

Table 1: MicroBlaze Bus Configurations

Configuration
Core
Fmax

Debug
available Memory Models Supported

1 IOPB+ILMB+DOPB+DLMB 110 SW/JTAG Large external instruction memory,
Fast internal instruction memory (BRAM),
Large external data memory,
Fast internal data memory (BRAM)

2 IOPB+DOPB+DLMB 125 SW/JTAG Large external instruction memory,
Large external data memory,
Fast internal data memory (BRAM)

3 ILMB+DOPB+DLMB 125 SW/JTAG Fast internal instruction memory (BRAM),
Large external data memory,
Fast internal data memory (BRAM)

4 IOPB+ILMB+DOPB 110 JTAG for ILMB
memory1

SW/for IOPB
memory

Large external instruction memory,
Fast internal instruction memory (BRAM),
Large external data memory,

5 IOPB+DOPB 125 SW/JTAG Large external instruction memory,
Large external data memory,

6 ILMB+DOPB 125 JTAG1 Fast internal instruction memory (BRAM),
Large external data memory,
14 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

MicroBlaze Bus Interfaces
R

Typical Peripheral Placement
This section provides typical peripheral placement and usage for each of the six configurations.
Because there are many options for interconnecting a MicroBlaze system, you should use the
following examples as guidelines for selecting a configuration closest to your application.

Configuration 1

Purpose

Use this configuration when your application requires more instruction and data memory than
is available in the on-chip block RAM (BRAM). Critical sections of instruction and data memory
can be allocated to the faster ILMB BRAM to improve your application’s performance.
Depending on how much data memory is required, the data-side memory controller may not be
present. The data-side OPB is also used for other peripherals such as UARTs, timers, general
purpose I/O, additional BRAM, and custom peripherals. The OPB-to-OPB bridge is only
required if the data-side OPB needs access to the instruction-side OPB peripherals, such as for
software-based debugging.

Typical Applications

• MPEG Decoder

• Communications Controller

• Complex state machine for process control and other embedded applications

• Set top boxes.

Characteristics

Because of the extra logic required to implement two buses per side, the maximum clock rate
of the CPU may be slightly less than configurations with one bus per side. This configuration
allows debugging of application code through either software-based debugging (resident
monitor debugging) or hardware-based JTAG debugging.

Figure 3: Configuration 1: IOPB+ILMB+DOPB+DLMB

DOPB

DLMB

IOPB

ILMB

Dual Port
Block RAM

A B

OPB-to-OPB
Bridge

Memory
Controller

(Ext. memory)

Memory
Controller

(Ext. memory)

Interrupt
Controller

Timer/
Counter

and WDT

UART
Other OPB

Master, Slave,
or Bridge

Data-side OPB
Instruction-side OPB

Data-side LMB Instruction-side LMB

MicroBlaze CPU Core
March 2002 www.xilinx.com 15
MicroBlaze Hardware Reference Guide 1-800-255-7778

MicroBlaze Bus Interfaces
R

Configuration 2

Purpose

Use this configuration when your application requires more instruction and data memory than
is available in the on-chip BRAM. In this configuration, all of the instruction memory is resident
in off-chip memory or on-chip memory on the instruction-side OPB. Depending on how much
data memory is required, the data-side memory controller may not be present. The data-side
OPB is also used for other peripherals such as UARTs, timers, general purpose I/O, additional
BRAM, and custom peripherals. The OPB-to-OPB bridge is only required if the data-side OPB
needs access to the instruction-side OPB peripherals, such as for software-based debugging.

Typical Applications

• MPEG Decoder

• Communications Controller

• Complex state machine for process control and other embedded applications

• Set top boxes.

Characteristics

This configuration allows the CPU core to operate at the maximum clock rate because of the
simpler instruction-side bus structure. Instruction fetches on the OPB, however, are slower
than fetches from BRAM on the LMB. Overall processor performance is lower than
implementations using LMB unless a large percentage of code is run from the internal
instruction history buffer. This configuration allows debugging of application code through
either software-based debugging (resident monitor debugging) or hardware-based JTAG
debugging.

Figure 4: Configuration 2: IOPB+DOPB+DLMB

DOPB

DLMB

IOPB

Block RAM

OPB-to-OPB
Bridge

Memory
Controller

(Ext. memory)

Memory
Controller

(Ext. memory)

Interrupt
Controller

Timer/
Counter

and WDT

UART
Other OPB

Master, Slave,
or Bridge

Data-side OPB
Instruction-side OPB

Data-side LMB

MicroBlaze CPU Core
16 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

MicroBlaze Bus Interfaces
R

Configuration 3

Purpose

Use this configuration when your application code fits into the on-chip BRAM, but more
memory may be required for data memory. Critical sections of data memory can be allocated to
the faster DLMB BRAM to improve your application’s performance. Depending on how much
data memory is required, the data-side memory controller may not be present. The data-side
OPB is also used for other peripherals such as UARTs, timers, general purpose I/O, additional
BRAM, and custom peripherals.

Typical Applications

• Data-intensive controllers

• Small to medium state machines

Characteristics

This configuration allows the CPU core to operate at the maximum clock rate because of the
simpler instruction-side bus structure. The instruction-side LMB provides two-cycle pipelined
read access from the BRAM for an effective access rate of one instruction per clock. This
configuration allows debugging of application code through either software-based debugging
(resident monitor debugging) or hardware-based JTAG debugging.

Figure 5: Configuration 3: ILMB+DOPB+DLMB

DOPB

DLMBILMB

Dual Port
Block RAM

A B

Memory
Controller

(Ext. memory)

Interrupt
Controller

Timer/
Counter

and WDT

UART
Other OPB

Master, Slave,
or Bridge

Data-side OPB

Data-side LMB Instruction-side LMB

MicroBlaze CPU Core
March 2002 www.xilinx.com 17
MicroBlaze Hardware Reference Guide 1-800-255-7778

MicroBlaze Bus Interfaces
R

Configuration 4

Purpose

Use this configuration when your application requires more instruction and data memory than
is available in the on-chip BRAM. Critical sections of instruction memory can be allocated to the
faster ILMB BRAM to improve your application’s performance. The data-side OPB is used for
one or more external memory controllers and other peripherals such as UARTs, timers, general
purpose I/O, additional BRAM, and custom peripherals. The OPB-to-OPB bridge is only
required if the data-side OPB needs access to the instruction-side OPB peripherals, such as for
software-based debugging.

Typical Applications

• MPEG Decoder

• Communications Controller

• Complex state machine for process control and other embedded applications

• Set top boxes

Characteristics

Because of the extra logic required to implement two buses per side, the maximum clock rate
of the CPU may be slightly less than configurations with one bus per side. This configuration
allows debugging of application code through either software-based debugging (resident
monitor debugging) or hardware-based JTAG debugging. However, software-based debugging
of code in the ILMB BRAM can only be performed if a BRAM memory controller is included on
the D-side OPB bus to provide write access to the LMB BRAM.

Figure 6: Configuration 4: IOPB+ILMB+DOPB

DOPBIOPB

ILMB

Block RAM

OPB-to-OPB
Bridge

Memory
Controller

(Ext. memory)

Memory
Controller

(Ext. memory)

Interrupt
Controller

Timer/
Counter

and WDT

UART
Other OPB

Master, Slave,
or Bridge

Data-side OPB
Instruction-side OPB

Instruction-side LMB

MicroBlaze CPU Core

BRAM Memory
Controller
18 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

MicroBlaze Bus Interfaces
R

Configuration 5

Purpose

Use this configuration when your application requires external instruction and data memory. In
this configuration, all of the instruction and data memory is resident in off-chip memory or on-
chip memory on the OPB buses. The data-side OPB is used for one or more external memory
controllers and other peripherals such as UARTs, timers, general purpose I/O, BRAM, and
custom peripherals. The OPB-to-OPB bridge is only required if the data-side OPB needs
access to the instruction-side OPB peripherals, such as for software-based debugging.

Typical Applications

• MPEG Decoder

• Communications Controller

• Complex state machine for process control and other embedded applications

• Set top boxes

Characteristics

This configuration allows the CPU core to operate at the maximum clock rate because of the
simpler instruction-side bus structure. However, instruction fetches on the OPB are slower than
fetches from BRAM on the LMB. Overall processor performance is lower than implementations
using LMB unless a large percentage of code is run from the internal instruction history buffer.
This configuration allows debugging of application code through either software-based
debugging (resident monitor debugging) or hardware-based JTAG debugging.

Figure 7: Configuration 5: IOPB+DOPB

DOPBIOPB

OPB-to-OPB
Bridge

Memory
Controller

(Ext. memory)

Memory
Controller

(Ext. memory)

Interrupt
Controller

Timer/
Counter

and WDT

UART
Other OPB

Master, Slave,
or Bridge

Data-side OPB
Instruction-side OPB

MicroBlaze CPU Core
March 2002 www.xilinx.com 19
MicroBlaze Hardware Reference Guide 1-800-255-7778

MicroBlaze Bus Interfaces
R

Configuration 6

Purpose

Use this configuration when your application code fits into the on-chip ILMB BRAM, but more
memory may be required for data memory. The data-side OPB is used for one or more external
memory controllers and other peripherals such as UARTs, timers, general purpose I/O,
additional BRAM, and custom peripherals.

Typical Applications

• Minimal controllers

• Small to medium state machines

Characteristics

This configuration allows the CPU core to operate at the maximum clock rate because of the
simpler instruction-side bus structure. The instruction-side LMB provides two-cycle pipelined
read access from the BRAM for an effective access rate of one instruction per clock. This
configuration allows debugging of application code through either software-based debugging
(resident monitor debugging) or hardware-based JTAG debugging. However, software-based
debugging of code in the ILMB BRAM can only be performed if a BRAM memory controller is
included on the D-side OPB bus to provide write access to the LMB BRAM.

Figure 8: Configuration 6: ILMB+DOPB

DOPB

ILMB

Dual Port
Block RAM

Memory
Controller

(Ext. memory)

Interrupt
Controller

Timer/
Counter

and WDT

UART
Other OPB

Master, Slave,
or Bridge

Data-side OPB

Instruction-side LMB

MicroBlaze CPU Core

UARTUART
BRAM Memory

Controller
20 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

MicroBlaze Bus Interfaces
R

Bit and Byte
Labeling

The MicroBlaze buses are labeled using a big-endian naming convention. The bit and byte
labeling for the MicroBlaze data types is shown in the following figure:

Core I/O The MicroBlaze core implements separate buses for instruction fetch and data access,
denoted the I side and D side buses, respectively. These buses are split into the following two
bus types:

• OPB V2.0 compliant bus for OPB peripherals and memory controllers

• Local Memory Bus used exclusively for high-speed access to internal block RAM (BRAM).

All core I/O signals are listed in Table 2. Page numbers prefaced by OPB reference IBM’s 64-
Bit On-Chip Peripheral Bus, Architectural Specifications, Version 2.0.

The core interfaces shown in the following table are defined as follows:

DOPB: Data interface, On-chip Peripheral Bus
DLMB: Data interface, Local Memory Bus (BRAM only)
IOPB: Instruction interface, On-chip Peripheral Bus
ILMB: Instruction interface, Local Memory Bus (BRAM only)
Core: Miscellaneous signals

Figure 9: MicroBlaze Big-Endian Data Types

n n+1 n+2 n+3

0 1 2 3

MSByte LSByte

0 31

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n n+1

0 1

MSByte LSByte

0 15

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n

0

MSByte

0 7

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

Byte

Halfword

Word
March 2002 www.xilinx.com 21
MicroBlaze Hardware Reference Guide 1-800-255-7778

MicroBlaze Bus Interfaces
R

Table 2: Summary of MicroBlaze Core I/O

Signal Interface I/O Description Page

DM_ABus[0:31] DOPB O Data interface OPB address bus OPB-11

DM_BE[0:3] DOPB O Data interface OPB byte enables OPB-16

DM_busLock DOPB O Data interface OPB buslock OPB-9

DM_DBus[0:31] DOPB O Data interface OPB write data bus OPB-13

DM_request DOPB O Data interface OPB bus request OPB-8

DM_RNW DOPB O Data interface OPB read, not write OPB-12

DM_select DOPB O Data interface OPB select OPB-12

DM_seqAddr DOPB O Data interface OPB sequential address OPB-13

DOPB_DBus[0:31] DOPB I Data interface OPB read data bus OPB-13

DOPB_errAck DOPB I Data interface OPB error acknowledge OPB-15

DOPB_MGrant DOPB I Data interface OPB bus grant OPB-9

DOPB_retry DOPB I Data interface OPB bus cycle retry OPB-10

DOPB_timeout DOPB I Data interface OPB timeout error OPB-10

DOPB_xferAck DOPB I Data interface OPB transfer acknowledge OPB-14

IM_ABus[0:31] IOPB O Instruction interface OPB address bus OPB-11

IM_BE[0:3] IOPB O Instruction interface OPB byte enables OPB-16

IM_busLock IOPB O Instruction interface OPB buslock OPB-9

IM_DBus[0:31] IOPB O Instruction interface OPB write data bus (always 0x00000000) OPB-13

IM_request IOPB O Instruction interface OPB bus request OPB-8

IM_RNW IOPB O Instruction interface OPB read, not write (tied to ’0’) OPB-12

IM_select IOPB O Instruction interface OPB select OPB-12

IM_seqAddr IOPB O Instruction interface OPB sequential address OPB-13

IOPB_DBus[0:31] IOPB I Instruction interface OPB read data bus OPB-13

IOPB_errAck IOPB I Instruction interface OPB error acknowledge OPB-15

IOPB_MGrant IOPB I Instruction interface OPB bus grant OPB-9

IOPB_retry IOPB I Instruction interface OPB bus cycle retry OPB-10

IOPB_timeout IOPB I Instruction interface OPB timeout error OPB-10

IOPB_xferAck IOPB I Instruction interface OPB transfer acknowledge OPB-12

Data_Addr[0:31] DLMB O Data interface LB address bus 26

Byte_Enable[0:3] DLMB O Data interface LB byte enables 26

Data_Write[0:31] DLMB O Data interface LB write data bus 27

D_AS DLMB O Data interface LB address strobe 27

Read_Strobe DLMB O Data interface LB read strobe 27

Write_Strobe DLMB O Data interface LB write strobe 27

Data_Read[0:31] DLMB I Data interface LB read data bus 27
22 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

MicroBlaze Bus Interfaces
R

Bus
Organization

OPB Bus Configuration
The MicroBlaze OPB interfaces are organized as byte-enable capable only masters. The byte-
enable architecture is an optional subset of the OPB V2.0 specification and is ideal for low-
overhead FPGA implementations such as MicroBlaze.

The OPB data bus interconnects are illustrated in Figure 10. The write data bus (from masters
and bridges) is separated from the read data bus (from slaves and bridges) to break up the bus
OR logic. In minimal cases this can completely eliminate the OR logic for the read or write data
buses. Optionally, you can "OR" together the read and write buses to create the correct
functionality for the OPB bus monitor. Note that the instruction-side OPB contains a write data
bus (tied to 0x00000000) and a RNW signal (tied to logic 1) so that its interface remains
consistent with the data-side OPB. These signals are constant and generally are minimized in
implementation.

A multi-ported slave is used instead of a bridge in the example shown in Figure 11. This could
represent a memory controller with a connection to both the IOPB and the DOPB. In this case,
the bus multiplexing and prioritization must be done in the slave. The advantage of this
approach is that a separate I-to-D bridge and an OPB arbiter on the instruction side are not
required. The arbiter function must still exist in the slave device.

DReady DLMB I Data interface LB data ready 27

Instr_Addr[0:31] ILMB O Instruction interface LB address bus 26

I_AS ILMB O Instruction interface LB address strobe 27

IFetch ILMB O Instruction interface LB instruction fetch 27

Instr[0:31] ILMB I Instruction interface LB read data bus 27

IReady ILMB I Instruction interface LB data ready 27

Interrupt Core I Interrupt

Reset Core I Core reset

Clk Core I Clock

Debug_Rst Core I Reset signal from OPB JTAG UART

Ext_BRK Core I Break signal from OPB JTAG UART

Ext_NM_BRK Core I Non-maskable break signal from OPB JTAG UART

Table 2: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description Page
March 2002 www.xilinx.com 23
MicroBlaze Hardware Reference Guide 1-800-255-7778

MicroBlaze Bus Interfaces
R

Figure 10: OPB Interconnection (breaking up read and write buses)

DM_ABus[0:31]
DM_BE[0:3]
DM_busLock
DM_wrDBus[0:31]
DM_RNW
DM_select
DM_seqAddr

DOPB_ABus[0:31]
DOPB_BE[0:3]
DOPB_busLock
DOPB_wrDBus[0:31]

DOPB_RNW
DOPB_select
DOPB_seqAddr
DOPB_errAck
DOPB_retry
DOPB_timeout
DOPB_toutSup
DOPB_xferAck

DOPB_ABus[0:31]
DOPB_BE[0:3]
DOPB_busLock

DOPB_rdDBus[0:31]

DOPB_RNW
DOPB_select
DOPB_seqAddr

DOPB_errAck
DOPB_retry
DOPB_timeout
DOPB_xferAck

DOPB_wrDBus[0:31]

Sl1_rdDBus[0:31]
Sl1_errAck
Sl1_retry
Sl1_timeout
Sl1_toutSup
Sl1_xferAck

DOPB_ABus[0:31]
DOPB_BE[0:3]
DOPB_busLock

DOPB_RNW
DOPB_select
DOPB_seqAddr

DOPB_wrDBus[0:31]

Br1I_rdDBus[0:31]
Br1_errAck
Br1_retry
Br1_timeout

Br1_ABus[0:31]
Br1_BE[0:3]
Br1_busLock
Br1D_wrDBus[0:31]
Br1_RNW
Br1_select
Br1_seqAddr

IOPB_rdDBus[0:31]
IOPB_errAck
IOPB_retry
IOPB_timeout
IOPB_toutSup

IM_ABus[0:31]
IM_BE[0:3]
IM_busLock

IM_RNW
IM_select
IM_seqAddr

IOPB_rdDBus[0:31]
IOPB_errAck
IOPB_retry
IOPB_timeout
IOPB_xferAck

IOPB_ABus[0:31]
IOPB_BE[0:3]
IOPB_busLock

IOPB_RNW
IOPB_select
IOPB_seqAddr

IOPB_wrDBus[0:31]

Sl2_rdDBus[0:31]
Sl2_errAck
Sl2_retry
Sl2_timeout
Sl2_toutSup
Sl2_xferAck

IOPB_ABus[0:31]
IOPB_BE[0:3]
IOPB_busLock
IOPB_wrDBus[0:31]

IOPB_RNW
IOPB_select
IOPB_seqAddr
IOPB_errAck
IOPB_retry
IOPB_timeout
IOPB_toutSup
IOPB_xferAck

Br1_toutSup

MicroBlaze
Data OPB
Interface

(DOPB)

OPB
Slave1

MicroBlaze
Instr OPB
Interface

(IOPB)

OPB
Slave2

DOPB
to

IOPB

Bridge

OR

like

suffixes

OR

like

suffixes

DOPB_rdDBus[0:31]

IOPB_rdDBus[0:31]

OR
IOPB_wrDBus[0:31]
IOPB_rdDBus[0:31]

IOPB_DBus[0:31]

OR
DOPB_wrDBus[0:31]
DOPB_rdDBus[0:31]

DOPB_DBus[0:31]

Present for Bus Monitor functions:

Present for Bus Monitor functions:

Data-side OPB

Instruction-side OPB

I-side
OPB

arbiter

D-side
OPB

arbiter

Required if more than
one master present

Required

Br1_xferAckIOPB_xferAck

IM_wrDBus[0:31]

DM_requestDOPB_MGrant

IM_requestIOPB_MGrant

Br1_requestBr1_MGrant
24 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

MicroBlaze Bus Interfaces
R

Figure 11: OPB Interconnection (with multi-ported slave and no bridge)

DM_ABus[0:31]
DM_BE[0:3]
DM_busLock
DM_wrDBus[0:31]
DM_RNW
DM_select
DM_seqAddr

DOPB_ABus[0:31]
DOPB_BE[0:3]
DOPB_busLock
DOPB_wrDBus[0:31]

DOPB_RNW
DOPB_select
DOPB_seqAddr
DOPB_errAck
DOPB_retry
DOPB_timeout
DOPB_toutSup
DOPB_xferAck

DOPB_ABus[0:31]
DOPB_BE[0:3]
DOPB_busLock

DOPB_rdDBus[0:31]

DOPB_RNW
DOPB_select
DOPB_seqAddr

DOPB_errAck
DOPB_retry
DOPB_timeout
DOPB_xferAck

DOPB_wrDBus[0:31]

Sl1_rdDBus[0:31]
Sl1_errAck
Sl1_retry
Sl1_timeout
Sl1_toutSup
Sl1_xferAck

DOPB_ABus[0:31]
DOPB_BE[0:3]
DOPB_busLock

DOPB_RNW
DOPB_select
DOPB_seqAddr

DOPB_wrDBus[0:31]

IM_ABus[0:31]
IM_BE[0:3]
IM_busLock

IM_RNW
IM_select
IM_seqAddr

IOPB_rdDBus[0:31]
IOPB_errAck
IOPB_retry
IOPB_timeout
IOPB_xferAck

IOPB_ABus[0:31]
IOPB_BE[0:3]
IOPB_busLock

IOPB_RNW
IOPB_select
IOPB_seqAddr

IOPB_wrDBus[0:31]

Sl2_rdDBus[0:31]
Sl2_errAck
Sl2_retry
Sl2_timeout
Sl2_toutSup
Sl2_xferAck

IOPB_ABus[0:31]
IOPB_BE[0:3]
IOPB_busLock
IOPB_wrDBus[0:31]

IOPB_RNW
IOPB_select
IOPB_seqAddr
IOPB_errAck
IOPB_retry
IOPB_timeout
IOPB_toutSup
IOPB_xferAck

MicroBlaze
Data OPB
Interface

(DOPB)

OPB
Slave1

MicroBlaze
Instr OPB
Interface

(IOPB)

OR

like

suffixes

OR

like

suffixes

DOPB_rdDBus[0:31]

IOPB_rdDBus[0:31]

OR
IOPB_wrDBus[0:31]
IOPB_rdDBus[0:31]

IOPB_DBus[0:31]

OR
DOPB_wrDBus[0:31]
DOPB_rdDBus[0:31]

DOPB_DBus[0:31]

Present for Bus Monitor functions:

Present for Bus Monitor functions:

Data-side OPB

Instruction-side OPB

Sl2_rdDBus[0:31]
Sl2_errAck
Sl2_retry
Sl2_timeout
Sl2_toutSup
Sl2_xferAck

OPB
Slave2
(multi-
ported)

D-side
OPB

arbiter

Required if more than
one master present

DM_requestDOPB_MGrant

IM_requestIOPB_MGrant
March 2002 www.xilinx.com 25
MicroBlaze Hardware Reference Guide 1-800-255-7778

MicroBlaze Bus Interfaces
R

LMB Bus Definition
The Local Memory Bus (LMB) is a synchronous bus used primarily to access on-chip block
RAM. It uses a minimum number of control signals and a simple protocol to ensure that local
block RAM is accessed in a single clock cycle. LMB signals and definitions are shown in the
following table. All LMB signals are high true.

Addr[0:31]

The address bus is an output from the core and indicates the memory address that is being
accessed by the current transfer. It is valid only when AS is high. In multicycle accesses
(accesses requiring more than one clock cycle to complete), Addr[0:31] is valid only in the first
clock cycle of the transfer.

Byte_Enable[0:3]

The byte enable signals are outputs from the core and indicate which byte lanes of the data bus
contain valid data. Byte_Enable[0:3] is valid only when AS is high. In multicycle accesses
(accesses requiring more than one clock cycle to complete), Byte_Enable[0:3] is valid only in
the first clock cycle of the transfer. Valid values for Byte_Enable[0:3] are shown in the following
table:

Table 3: LMB Bus Signals

Signal Data Interface Instr. Interface Type Description

Addr[0:31] Data_Addr[0:31] Instr_Addr[0:31] O Address bus

Byte_Enable[0:3] Byte_Enable[0:3] not used O Byte enables

Data_Write[0:31] Data_Write[0:31] not used O Write data bus

AS D_AS I_AS O Address strobe

Read_Strobe Read_Strobe IFetch O Read in progress

Write_Strobe Write_Strobe not used O Write in progress

Data_Read[0:31] Data_Read[0:31] Instr[0:31] I Read data bus

Ready DReady IReady I Ready for next transfer

Clk Clk Clk I Bus clock

Table 4: Valid Values for Byte_Enable[0:3]

Byte Lanes Used

Byte_Enable[0:3] Data[0:7] Data[8:15] Data[16:23] Data[24:31]

0000

0001 x

0010 x

0100 x

1000 x

0011 x x

1100 x x

1111 x x x x
26 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

MicroBlaze Bus Interfaces
R

Data_Write[0:31]

The write data bus is an output from the core and contains the data that is written to memory.
It becomes valid when AS is high and goes invalid in the clock cycle after Ready is sampled
high. Only the byte lanes specified by Byte_Enable[0:3] contain valid data.

AS

The address strobe is an output from the core and indicates the start of a transfer and qualifies
the address bus and the byte enables. It is high only in the first clock cycle of the transfer, after
which it goes low and remains low until the start of the next transfer.

Read_Strobe

The read strobe is an output from the core and indicates that a read transfer is in progress. This
signal goes high in the first clock cycle of the transfer, and remains high until the clock cycle
after Ready is sampled high. If a new read transfer is started in the clock cycle after Ready is
high, then Read_Strobe remains high.

Write_Strobe

The write strobe is an output from the core and indicates that a write transfer is in progress.
This signal goes high in the first clock cycle of the transfer, and remains high until the clock
cycle after Ready is sampled high. If a new write transfer is started in the clock cycle after
Ready is high, then Write_Strobe remains high.

Data_Read[0:31]

The read data bus is an input to the core and contains data read from memory.
Data_Read[0:31] is valid on the rising edge of the clock when Ready is high.

Ready

The Ready signal is an input to the core and indicates completion of the current transfer and
that the next transfer can begin in the following clock cycle. It is sampled on the rising edge of
the clock. For reads, this signal indicates the Data_Read[0:31] bus is valid, and for writes it
indicates that the Data_Write[0:31] bus has been written to local memory.

Clk

All operations on the LMB are synchronous to the MicroBlaze core clock.
March 2002 www.xilinx.com 27
MicroBlaze Hardware Reference Guide 1-800-255-7778

MicroBlaze Bus Interfaces
R

LMB Bus Operations
The following diagrams provide examples of LMB bus operations.

Generic Write Operation

Generic Read Operation

Figure 12: LMB Generic Write Operation

Figure 13: LMB Generic Read Operation

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

A0

1111

D0

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

A0

1111

D0
28 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

MicroBlaze Bus Interfaces
R

Back-to-Back Write Operation (Typical LMB access - 2 clocks per write)

Single Cycle Back-to-Back Read Operation (Typical I-side access - 1 clock per read)

Back-to-Back Mixed Read/Write Operation (Typical D-side timing)

Figure 14: LMB Back-to-Back Write Operation

Figure 15: LMB Single Cycle Back-to-Back Read Operation

Figure 16: Back-to-Back Mixed Read/Write Operation

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

A0 A1

BE0 BE1

D0 D1

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

A0 A1 A2

BE0 BE1 BE2

D0 D1 D2

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

A0 A1

BE0 BE1

D1

D0
March 2002 www.xilinx.com 29
MicroBlaze Hardware Reference Guide 1-800-255-7778

MicroBlaze Bus Interfaces
R

Read and Write Data Steering
The MicroBlaze data-side bus interface performs the read steering and write steering required
to support the following transfers:

• byte, halfword, and word transfers to word devices

• byte and halfword transfers to halfword devices

• byte transfers to byte devices

MicroBlaze does not support transfers that are larger than the addressed device. These types
of transfers require dynamic bus sizing and conversion cycles that are not supported by the
MicroBlaze bus interface. Data steering for read cycles is shown in Table 5, and data steering
for write cycles is shown in Table 6

Note that other OPB masters may have more restrictive requirements for byte lane placement
than those allowed by MicroBlaze. OPB slave devices are typically attached "left-justified" with
byte devices attached to the most-significant byte lane, and halfword devices attached to the
most significant halfword lane. The MicroBlaze steering logic fully supports this attachment
method.

Table 5: Read Data Steering (load to Register rD)

Register rD Data

Address
[30:31]

Byte_Enable
[0:3]

Transfer
Size rD[0:7] rD[8:15] rD[16:23] rD[24:31]

11 0001 byte Byte3

10 0010 byte Byte2

01 0100 byte Byte1

00 1000 byte Byte0

10 0011 halfword Byte2 Byte3

00 1100 halfword Byte0 Byte1

00 1111 word Byte0 Byte1 Byte2 Byte3

Table 6: Write Data Steering (store from Register rD)

Write Data Bus Bytes

Address
[30:31]

Byte_Enable
[0:3]

Transfer
Size Byte0 Byte1 Byte2 Byte3

11 0001 byte rD[24:31]

10 0010 byte rD[24:31]

01 0100 byte rD[24:31]

00 1000 byte rD[24:31]

10 0011 halfword rD[16:23] rD[24:31]

00 1100 halfword rD[16:23] rD[24:31]

00 1111 word rD[0:7] rD[8:15] rD[16:23] rD[24:31]
30 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

MicroBlaze Bus Interfaces
R

Implementation Parameterization
The following characteristics of the MicroBlaze bus interface can be parameterized:

• Data Interface options: OPB only, LMB+OPB

• Instruction Interface options: LMB only, LMB+OPB, OPB only
March 2002 www.xilinx.com 31
MicroBlaze Hardware Reference Guide 1-800-255-7778

MicroBlaze Bus Interfaces
R

32 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Summary This document describes how to use the IBM On-chip Peripheral Bus (OPB) in Xilinx FPGAs.
This document provides guidelines and simplifications for efficient FPGA implementations, and
the subset of signals used in Xilinx-developed OPB devices.

Overview For detailed information on the IBM OPB, refer to IBM’s On-Chip Peripheral Bus, Architecture
Specifications, Version 2.1:

OpbBus.pdf

The OPB is one element of IBM’s CoreConnect architecture, and is a general-purpose
synchronous bus designed for easy connection of on-chip peripheral devices. The OPB
includes the following features:

• 32-bit or 64-bit data bus

• Up to 64-bit address

• Supports 8-bit, 16-bit, 32-bit, and 64-bit slaves

• Supports 32-bit and 64-bit masters

• Dynamic bus sizing with byte, halfword, fullword, and doubleword transfers

• Optional Byte Enable support

• Distributed multiplexer bus instead of 3-state drivers

• Single cycle transfers between OPB master and OPB slaves (not including arbitration)

• Support for sequential address protocol

• 16-cycle bus time-out (provided by arbiter)

• Slave time-out suppress capability

• Support for multiple OPB bus masters

• Support for bus parking

• Support for bus locking

• Support for slave-requested retry

• Bus arbitration overlapped with last cycle of bus transfers

The OPB is a full-featured bus architecture with many features that increase bus performance.
Most of these features map well to the FPGA architecture, however, some can result in the
inefficient use of FPGA resources or can lower system clock rates. Consequently, Xilinx uses
an efficient subset of the OPB for Xilinx-developed OPB devices. However, because of the
flexible nature of FPGAs, you can also implement systems utilizing OPB devices that are fully
OPB V2.1 compliant.

Xilinx OPB
Usage

OPB Options

Legacy Devices

Previous to OPB V2.0, there was a single signaling protocol for OPB data transfers. This
protocol (which is also present in OPB V2.0 and later specifications) supports dynamic bus
sizing through the use of transfer qualifiers and acknowledge signals. The transfer qualifiers

Xilinx Embedded Processors: OPB Peripherals

March 2002

OPB Usage in Xilinx FPGAs
R

March 2002 www.xilinx.com 33
MicroBlaze Hardware Reference Guide 1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/9A7AFA74DAD200D087256AB30005F0C8/$file/OpbBus.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/9A7AFA74DAD200D087256AB30005F0C8/$file/OpbBus.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/9A7AFA74DAD200D087256AB30005F0C8/$file/OpbBus.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/9A7AFA74DAD200D087256AB30005F0C8/$file/OpbBus.pdf

OPB Usage in Xilinx FPGAs
R

denote the size of the transfer initiated by the master, and the acknowledge signals indicate the
size of the transfer from the slave. Devices that support this type of dynamic bus sizing are
called legacy devices.

Byte-enable Devices

Starting with OPB V2.0, IBM introduced an optional, alternate transfer protocol based on Byte
Enables. In the byte-enable architecture, each byte lane of the data bus has an associated byte
enable signal. For each transfer, the byte enable signals indicate which byte lanes have valid
data. This eliminates the need for separate transfer qualifiers that indicate the transfer size
since all size information is contained in the byte enable signals. The byte-enable architecture,
by itself, does not permit dynamic bus sizing, since there is only one acknowledge signal for
each transfer. The OPB V2.0 specification (and later) allows you to build systems that are
legacy-only, byte-enable only, or mixed. Devices that only support the byte-enable signaling
are called byte-enable devices.

OPB V2.0 Devices

Devices that support both byte-enable signaling and legacy signaling are called OPB V2.0
devices. Systems that have both legacy signaling and byte-enable signaling can perform
dynamic bus sizing. Note that legacy devices do not support byte-enable transfers.

Xilinx OPB Devices
These various transfer protocols have several implications for Xilinx OPB device
implementations.

Conversion Cycles

Dynamic bus sizing (as supported by legacy devices) results in conversion cycles, which are
extra transfer cycles that re-transfer data when the master-initiated transfer is larger than the
slave response. For example, in a legacy system, if a master writes a 32-bit word to a slave,
and the 8-bit device slave responds that it only accepted 8-bits of the transfer, then the master
must perform three additional conversion cycles to transfer all of the data to the slave.
Generating conversion cycles requires more logic, increases the complexity of the master, and
is not an efficient use of FPGA resources. The byte-enable architecture provides a simple
alternative to this problem, and is easier to implement in an FPGA.

Write Mirroring and Read Steering

Another consequence of supporting devices smaller than the bus size is write mirroring and
read steering. In the OPB specification, devices smaller than the bus size are always left-
justified (aligned toward the most significant side of the bus) so that the byte lanes associated
with the smaller devices are easily determined. For example, a byte-wide peripheral is always
located on the most-significant byte of the bus. The peripheral writes and reads data using this
byte-lane. You can simplify the design of OPB masters by using a byte-enable only, no-write-
mirroring architecture. A small degree of added complexity is required for peripherals that are
smaller than the bus size if OPB masters do not mirror data.

Ideal FPGA Implementation of OPB-based System

The ideal FPGA implementation of an OPB-based system has the following features:

• Requires no conversion cycles

• Uses only the byte-enable architecture as specified in the OPB specification

• Does not require masters to mirror write data

These characteristics help determine how Xilinx-developed OPB devices are implemented.
The detailed specifications that describe how the OPB is used in Xilinx intellectual property are
provided in the next section.
34 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Usage in Xilinx FPGAs
R

Specifications for OPB Usage in Xilinx-developed OPB Devices
Xilinx-developed OPB devices adhere to the following OPB usage rules:

• The width of the OPB data buses and address buses is 32 bits. Note that some
peripherals may parameterize these widths, but currently only 32-bit buses are supported.
Peripherals that are smaller than 32-bits can be attached to the OPB with a corresponding
restriction in addressing. For example, an 8-bit peripheral at base address A can be
attached to byte lane 0, but can only be addressed at A, A+4, A+8, etc.

• All OPB devices (masters and slaves) are byte-enable devices. These devices do not
support the legacy data transfer signals and therefore do not support dynamic bus sizing.
OPB masters do not mirror data to unused byte lanes. See Figure 1 for the byte lane
usage for aligned transfers.

• All OPB devices (masters and slaves) are required to output logic zero when they are
inactive. This eliminates the need for the Mn_DBusEn and Sln_DBusEn signals external
to the master or slave. The enable function is still implemented within the device.

• The byte-enables and the least-significant address bits will be driven by all masters and
will contain consistent information. Examples of byte lane usage for aligned transfers are
shown below in Figure 1.

• All OPB slave devices that require a continuous address space (i.e. use of all byte lanes)
will implement an attachment to the OPB bus that is as wide as the OPB data width,
regardless of device width. This eliminates the need for left justification on the OPB bus
and eliminates the need for masters to mirror write data. As an example, consider an 8-bit
memory device that must be addressed at consecutive byte addresses being attached to
a 32-bit OPB. The 8-bit memory device must implement a 32-bit wide attachment to the
OPB; in the bus attachment, data is steered from the proper byte lane into the 8-bit device
for writes, and from the 8-bit device onto the proper byte lane for reads. The simplest way
to accomplish this is with a multiplexer for steering the writes, and a connection from the
8-bit device to all byte lanes (essentially mirroring to all byte lanes) for reads.

• By convention, registers in all OPB slave devices are aligned to word boundaries (lowest
two address bits are "00"), regardless of the size of the data in the register or the size of
the peripheral.

Figure 1: Byte lane usage for aligned transfers

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(30:31) = "00",
Mn_BE = "1111"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(30:31) = "00",
Mn_BE = "1100"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(30:31) = "10",
Mn_BE = "0011"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(30:31) = "00",
Mn_BE = "1000"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(30:31) = "01",
Mn_BE = "0100"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(30:31) = "10",
Mn_BE = "0010"

0:7

8:15

16:23

24:31

Data Bus

Mn_ABus(30:31) = "11",
Mn_BE = "0001"

word transfer halfword transfer halfword transfer byte transfer

byte transfer byte transfer byte transfer

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve
March 2002 www.xilinx.com 35
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Usage in Xilinx FPGAs
R

• Master and Slave I/O: OPB masters will adhere exactly to the signal set shown in Table 1.
OPB slaves will adhere exactly to the signal set shown in Table 2. Devices that are both
master and slave will adhere exactly to the signal set shown in Table 3. Page numbers
referenced in the tables apply to both the OPB V2.0 specification and the OPB V2.1
specification, both from IBM. All signals shown must be present, except for the one signal
shown as optional (<Master>_DBus[0:31] for devices that are both master and slave). No
additional signals for OPB interconnection may be added. The naming convention is as
follows: <Master> represents a master name or acronym that starts with an upper-case
letter, <Slave> represents a slave name or acronym that starts with an upper-case letter.
<nOPB> represents an OPB identifier (for masters or slaves with more than OPB
attachment) and must start with an uppercase letter and end with upper-case "OPB". For
devices with a single OPB attachment, the <nOPB> identifier should default to "OPB" (for
example, OPB_ABus). All other parts of the signal name must be referenced exactly as
shown (including case).

Table 1: Summary of OPB Master-only I/O

Signal I/O Description

Page

(in Ref. 1)

<nOPB>_Clk I OPB Clock

<nOPB>_Rst I OPB Reset

<Master>_ABus[0:31] O Master address bus OPB-11

<Master>_BE[0:3] O Master byte enables OPB-16

<Master>_busLock O Master buslock OPB-9

<Master>_DBus[0:31] O Master write data bus OPB-13

<Master>_request O Master bus request OPB-8

<Master>_RNW O Master read, not write OPB-12

<Master>_select O Master select OPB-12

<Master>_seqAddr O Master sequential address OPB-13

<nOPB>_DBus[0:31] I OPB read data bus OPB-13

<nOPB>_errAck I OPB error acknowledge OPB-15

<nOPB>_MGrant I OPB bus grant OPB-9

<nOPB>_retry I OPB bus cycle retry OPB-10

<nOPB>_timeout I OPB timeout error OPB-10

<nOPB>_xferAck I OPB transfer acknowledge OPB-14

Table 2: Summary of OPB Slave-only I/O

Signal I/O Description
Page

(in Ref. 1)

<nOPB>_Clk I OPB Clock

<nOPB>_Rst I OPB Reset

<Slave>_DBus[0:31] O Slave data bus OPB-11

<Slave>_errAck O Slave error acknowledge OPB-15

<Slave>_retry O Slave retry OPB-10

<Slave>_toutSup O Slave timeout suppress OPB-15
36 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Usage in Xilinx FPGAs
R

<Slave>_xferAck O Slave transfer acknowledge OPB-14

<nOPB>_ABus[0:31] I OPB address bus OPB-11

<nOPB>_BE I OPB byte enable OPB-16

<nOPB>_DBus[0:31] I OPB data bus OPB-13

<nOPB>_RNW I OPB read/not write OPB-12

<nOPB>_select I OPB select OPB-12

<nOPB>_seqAddr I OPB sequential address OPB-13

Table 3: Summary of OPB Master/Slave Device I/O

Signal I/O Description
Page

(in Ref. 1)

<nOPB>_Clk I OPB Clock

<nOPB>_Rst I OPB Reset

<Master>_ABus[0:31] O Master address bus OPB-11

<Master>_BE[0:3] O Master byte enables OPB-16

<Master>_busLock O Master buslock OPB-9

<Master>_DBus[0:31] O Master write data bus (optional) OPB-13

<Master>_request O Master bus request OPB-8

<Master>_RNW O Master read, not write OPB-12

<Master>_select O Master select OPB-12

<Master>_seqAddr O Master sequential address OPB-13

<nOPB>_DBus[0:31] I OPB read data bus OPB-13

<nOPB>_errAck I OPB error acknowledge OPB-15

<nOPB>_MGrant I OPB bus grant OPB-9

<nOPB>_retry I OPB bus cycle retry OPB-10

<nOPB>_timeout I OPB timeout error OPB-10

<nOPB>_xferAck I OPB transfer acknowledge OPB-14

<Slave>_DBus[0:31] O Slave data bus (may optionally function as
master write data bus if <Master>_DBus
not present)

OPB-11

<Slave>_errAck O Slave error acknowledge OPB-15

<Slave>_retry O Slave retry OPB-10

<Slave>_toutSup O Slave timeout suppress OPB-15

<Slave>_xferAck O Slave transfer acknowledge OPB-14

<nOPB>_ABus[0:31] I OPB address bus OPB-11

<nOPB>_BE I OPB byte enable OPB-16

Table 2: Summary of OPB Slave-only I/O (Continued)

Signal I/O Description
Page

(in Ref. 1)
March 2002 www.xilinx.com 37
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Usage in Xilinx FPGAs
R

Notes on the signal sets:

• Xilinx-developed OPB devices do not support dynamic bus sizing and therefore do not
use the following legacy signals: Mn_dwXfer, Mn_fwXfer, Mn_hwXfer, Sln_dwAck,
Sln_fwAck, and Sln_hwAck.

• Since Xilinx-developed OPB devices are byte-enable only, the Mn_beXfer and Sln_beAck
signals are not required and so are not used.

• The signals required for masters and slaves are separate from the signals present in the
OPB interconnect. The OPB interconnect (the OR gates and other logic required to
connect OPB devices) supports the full OPB V2.1 specification (i.e. all signals are
present). Thus the OPB interconnect does not limit a design to byte-enable devices and
supports designs in which a mix of byte-enable, legacy, and OPB V2.0 devices are
present. The bus interconnect will not limit the use of any feature of the V2.1 specification.

Legacy OPB
Devices

Although byte-enable devices are the preferred and most efficient OPB devices in Xilinx
devices, some designs may also use legacy OPB devices or fully V2.0 compliant devices.
However, a legacy device cannot communicate directly with a byte-enable device because
they use different signal sets. An interface layer between the byte-enable device and the legacy
device is required. This interface is called the Byte Enable Interface (BEIF) device.

<nOPB>_RNW I OPB read/not write OPB-12

<nOPB>_select I OPB select OPB-12

<nOPB>_seqAddr I OPB sequential address OPB-13

Table 3: Summary of OPB Master/Slave Device I/O (Continued)

Signal I/O Description
Page

(in Ref. 1)
38 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Usage in Xilinx FPGAs
R

Mixed Systems
The system shown below represents a design with a mix of byte-enable, legacy, and OPB V2.0
devices. The BEIF device converts the legacy-type signals to byte-enable-type signals and vice
versa.

The BEIF device contains the following logic, not all of which must be used in all situations:

• Signal translation for byte-enable device to legacy device transfers: <Master>_BE is
translated to the appropriate <Master>_hwXfer, <Master>_fwXfer, and <Master>_dwXfer.
<nOPB>_BE is translated to the appropriate <nOPB>_hwXfer, <nOPB>_fwXfer, and
<nOPB>_dwXfer. <Slave>_hwXfer, <Slave>_fwXfer, and <Slave>_dwXfer are translated
to <Slave>_xferAck. <nOPB>_hwXfer, <nOPB>_fwXfer, and <nOPB>_dwXfer are
translated to <nOPB>_xferAck. The correct lower address bits are also generated.

• Signal translation for legacy device to byte-enable device transfers: <Master>_hwXfer,
<Master>_fwXfer, and <Master>_dwXfer are translated to <Master>_BE .
<nOPB>_hwXfer, <nOPB>_fwXfer, and <nOPB>_dwXfer are translated to <nOPB>_BE .
<Slave>_xferAck is translated to <Slave>_hwXfer, <Slave>_fwXfer, and
<Slave>_dwXfer. <nOPB>_xferAck is translated to <nOPB>_hwXfer, <nOPB>_fwXfer,
and <nOPB>_dwXfer.

• Mirroring and steering logic.

• Conversion cycle generator for byte-enable device to legacy device transfers.

With this architecture, systems that do not require full V2.1 features (for example, systems that
contain only Xilinx IP) do not need to instantiate the BEIF and hence optimally use the available
FPGA resources. Systems that require legacy or OPB V2.0 devices must instantiate the BEIF,
although the most costly part of the BEIF (the conversion cycle generator) only needs to be
instantiated if conversion cycles are possible (not all slaves will cause generation of conversion
cycles).

OPB Usage
Notes

The following are general notes on OPB usage that apply primarily to mixed systems:

• Conversion cycles are only required when a master generates a transfer request to a
slave that is larger than the slave’s width and the slave is capable of indicating that it

Figure 2: OPB Interconnect with Mixed Device Types

OPB V2.0
Slave

OPB V2.0
Master

Legacy
Master

Legacy
Slave

OPB Bus
Monitor or BFM

(test only)

Byte-Enable
Master2

Byte-Enable
Master1

Byte-Enable
Slave1

Byte-Enable
Slave2

PLB-to-OPB
Bridge

OPB Arbiter

BEIF BEIF BEIF BEIF BEIF

OPB
March 2002 www.xilinx.com 39
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Usage in Xilinx FPGAs
R

accepted a smaller transfer than the master requested hence requiring with a conversion
cycle.

• Byte-enable masters cannot directly generate conversion cycles. They require a
conversion cycle generator in the Byte Enable Interface (BEIF) device. This is because
byte-enable masters do not receive any size information in the acknowledge from the
slave.

• Byte-enable slaves cannot cause generation of conversion cycles. A consequence of this
is that any master accessing a byte-enable slave can only transfer data up to the size of
the slave. Transfers larger than the slave size will result in either 1) no response from the
slave (time-out), 2) an errAck from the slave, or 3) lost data; the actual result depends on
how the decode and acknowledge logic is implemented in the slave.

• Conversion cycle generator logic in the BEIF is required only for byte-enable device to
legacy/OPB V2.0 device transfers.

• Write mirroring and read steering in the V2.1 specification is based on left-justified
peripherals. A more complex slave attachment can be used instead of left justification.

OPB
Comparison

The following table illustrates the major embedded processor bus architectures used in Xilinx
FPGAs and lists some of their characteristics. Each bus has different capabilities in terms of
data transfer rates, multi-master capability, and data bursting. The use of a particular bus is
dictated by the processor used, the data bandwidth required in the application, and availability
of peripherals. The OPB is a general-purpose peripheral bus that can be effectively used in
many design situations.

PLB - Processor Local Bus (IBM). PLB Reference
OPB - On-chip Peripheral Bus (IBM). OPB Reference
OCM - On-chip Memory interface (IBM). OCM Reference
LMB - Local Memory Bus (Xilinx). MicroBlaze Bus Interfaces
DCR - Device Control Register bus (IBM). DCR Reference
40 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/8BA965C773B2E0ED87256AB20082CC9F/$file/64bitPlbBus.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/9A7AFA74DAD200D087256AB30005F0C8/$file/OpbBus.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/D060DB54BD4DC4F2872569D2004A30D6/$file/405_um.pdf
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/EA0DB87B2BB3702587256AB30006DD12/$file/DcrBus.pdf

OPB Usage in Xilinx FPGAs
R

Table 4: Comparison of buses used in Xilinx embedded processor systems

Feature

CoreConnect Buses Other Buses

PLB OPB DCR OCM LMB

Processor family PPC405 PPC405,
MicroBlaze

PPC405 PPC405 MicroBlaze

Data bus width 64 32 32 32 32

Address bus width 32 32 10 32 32

Clock rate, MHz (max)1 100 125 125 375 125

Masters (max) 8 16 1 1 1

Masters (typical) 2-8 2-8 1 1 1

Slaves (max) limited only by hardware resources 1 1

Slaves (typical) 2-6 2-8 1-8 1 1

Data rate (peak)2 1600 MB/s 500 MB/s 500 MB/s 500 MB/s 500 MB/s

Data rate (typical)3 533 MB/s4 167 MB/s5 100 MB/s8 333 MB/s6 333 MB/s7

Concurrent read/write Yes No No No No

Address pipelining Yes No No No No

Bus locking Yes Yes No No No

Retry Yes Yes No No No

Timeout Yes Yes No No No

Fixed burst Yes No No No No

Variable burst Yes No No No No

Cache fill Yes No No No No

Target word first Yes No No No No

FPGA resource usage High Medium Low Low Low

Compiler support for
load/store

Yes Yes No Yes Yes

Notes:
1. Maximum clock rates are estimates and are presented for comparison only. The actual maximum

clock rate for each bus is dependent on device family, device speed grade, design complexity, and
other factors.

2. Peak data rate is the maximum theoretical data transfer rate at the clock rate shown for each bus.
3. The typical data rates are intended to illustrate data rates that are representative of actual system

configurations. The typical data is highly dependent on the application software and system
hardware configuration.

4. Assumes primarily cache-line fills, minimal read/write concurrency (66.7% bus utilization).
5. Assumes minimal use of sequential address capabilities and 3 clock cycles per OPB transfer.
6. The OCM controller operates at the PPC405 core clock rate, but its data transfer rate is limited by

the access time of the on-chip memory. The typical data rate assumes 66.7% bus utilization.
7. Assumes 66.7% bus utilization.
8. Assumes DCR operates at same clock rate as PLB and each DCR access requires 5 clock cycles.

The number of clock cycles per DCR transfer is dependent on how many DCR devices are present
in the system. Each additional DCR device adds latency to all DCR transfers.
March 2002 www.xilinx.com 41
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Usage in Xilinx FPGAs
R

Revision
History

The following table shows the revision history for this document.

Date Version Revision

10/17/01 1.0 Initial Xilinx version.

10/19/01 1.1 Minor editorial changes. Added links to bus references.

12/10/01 1.2 Changed Figure 2 and other minor edits.

3/20/02 1.3 Updated for MDK 2.2
42 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Summary This document describes the Microprocessor Hardware Specification (MHS) format for
MicroBlaze.

Overview In the initial phase of MicroBlaze platform design, you create an MHS (Microprocessor
Hardware Specification) file that is used by the Platform Generator. This file defines your
platform configuration, and includes the following:

• Peripherals

• One of six configurations of the MicroBlaze bus interfaces

• Connectivity of the system

• Address space

MHS Syntax In general, MHS file syntax is case insensitive, however, signal and attribute names are case
sensitive. Attribute settings in the MHS file have priority over the equivalent attribute setting in
the Microprocessor Peripheral Definition (MPD) file. Refer to the Microprocessor Peripheral
Definition Format document for more information on MPD file syntax.

Comments
You can insert comments in the MHS file without disrupting processing. Comments begin with
a pound sign (#) and continue to the end of the line.

Peripheral Type
There are two types of peripherals:

• master

• slave

Peripheral names are in lower-case.

Use the following format at the beginning of a peripheral definition:

SELECT peripheral_type peripheral_name

Use the following format for a master peripheral:

SELECT master peripheral_name

Use the following format for a slave peripheral:

SELECT slave peripheral_name

Assignment Type
There are two types of assignments:

• attribute

• signal

Use the following format for assignment statements:

CSET assignment_type name = value

Xilinx Embedded Processors: MicroBlaze

March 2002

Microprocessor Hardware Specification
(MHS) Format

R

March 2002 www.xilinx.com 43
MicroBlaze Hardware Reference Guide 1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Microprocessor Hardware Specification (MHS) Format
R

Use the following format for attributes:

CSET attribute name = value

Attribute names are case-sensitive.

Use the following format for signals:

CSET signal name = connection

Signal names are case-sensitive.

Ending a Peripheral Definition
Use the following format to end a peripheral definition:

END

MHS Example
The following is an example MHS file:

SELECT bus opb_v20
CSET attribute HW_VER = 1.00.a
CSET attribute INSTANCE = myopb
CSET signal OPB_Clk = sys_clk
CSET signal SYS_Rst = sys_reset
END
SELECT slave opb_bram
CSET attribute HW_VER = 1.00.a
CSET attribute INSTANCE = mybram1
CSET attribute C_HIGHADDR = 0xFFFF1FFF
CSET attribute C_BASEADDR = 0xFFFF0000
CSET signal OPB_Clk = sys_clk
END
SELECT SLAVE opb_uartlite
CSET attribute HW_VER = 1.00.a
CSET attribute INSTANCE = myuartlite1
CSET attribute C_HIGHADDR = 0xFFFF80FF
CSET attribute C_BASEADDR = 0xFFFF8000
CSET signal RX = rx1
CSET signal TX = tx1
CSET signal OPB_Clk = sys_clk
CSET signal Interrupt = int_periph, PRIORITY=1
END
SELECT SLAVE opb_arbiter
CSET attribute HW_VER = 1.02.b
CSET attribute INSTANCE = myarbiter1
CSET attribute C_HIGHADDR = 0x00FF90FF
CSET attribute C_BASEADDR = 0x00FF9000
CSET attribute C_PARK = 0
CSET attribute C_PROC_INTRFCE = 0
CSET attribute C_REG_GRANTS = 1
CSET signal OPB_Clk = sys_clk
END
SELECT SLAVE opb_timer
CSET attribute HW_VER = 1.00.a
CSET attribute INSTANCE = mytimer1
CSET attribute C_HIGHADDR = 0xFFFFA0FF
CSET attribute C_BASEADDR = 0xFFFFA000
CSET signal CaptureTrig0 = CaptureTrig0
CSET signal CaptureTrig1 = CaptureTrig1
CSET signal CompareOut0 = CompareOut0
CSET signal CompareOut1 = CompareOut1
CSET signal PWM0 = PWM0
CSET signal OPB_Clk = sys_clk

44 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Microprocessor Hardware Specification (MHS) Format
R

CSET signal Interrupt = int_periph, PRIORITY=2
END
SELECT SLAVE opb_gpio
CSET attribute HW_VER = 1.00.a
CSET attribute INSTANCE = mygpio1
CSET attribute C_HIGHADDR = 0xFFFFC0FF
CSET attribute C_BASEADDR = 0xFFFFC000
CSET signal GPIO_IO = External_IO
CSET signal OPB_Clk = sys_clk
END
SELECT SLAVE opb_intc
CSET attribute HW_VER = 1.00.a
CSET attribute INSTANCE = myintc1
CSET attribute C_HIGHADDR = 0xFFFFD0FF
CSET attribute C_BASEADDR = 0xFFFFD000
CSET signal Irq = Interrupt
CSET signal Int = int_periph
CSET signal OPB_Clk = sys_clk
END
SELECT SLAVE opb_zbt_controller
CSET attribute HW_VER = 1.00.a
CSET attribute INSTANCE = myzbt1
CSET attribute C_BASEADDR = 0xFF800000
CSET attribute C_HIGHADDR = 0xFF8000FF
CSET attribute C_ZBT_ADDR_SIZE = 17
CSET signal ZBT_Clk_FB = ZBT_Clk_FB
CSET signal ZBT_Clk = ZBT_Clk
CSET signal ZBT_OE_N = ZBT_OE_N
CSET signal ZBT_ADV_LD_N = ZBT_ADV_LD_N
CSET signal ZBT_LBO_N = ZBT_LBO_N
CSET signal ZBT_CE1_N = ZBT_CE1_N
CSET signal ZBT_CE2_N = ZBT_CE2_N
CSET signal ZBT_CE2 = ZBT_CE2
CSET signal ZBT_RW_N = ZBT_RW_N
CSET signal ZBT_CKE_N = ZBT_CKE_N
CSET signal ZBT_A = ZBT_A
CSET signal ZBT_BW_N = ZBT_BW_N
CSET signal ZBT_IO = ZBT_IO
CSET signal ZBT_IOP = ZBT_IOP
CSET signal OPB_Clk = sys_clk
END
SELECT MASTER microblaze
CSET attribute HW_VER = 1.00.a
CSET attribute INSTANCE = microblaze1
CSET attribute CONFIGURATION = 1
CSET signal Interrupt = Interrupt
CSET signal Clk = sys_clk
CSET attribute C_LM_HIGHADDR = 0x00007fff
CSET attribute C_LM_BASEADDR = 0x00000000
END
March 2002 www.xilinx.com 45
MicroBlaze Hardware Reference Guide 1-800-255-7778

Microprocessor Hardware Specification (MHS) Format
R

MHS Peripheral
Options

Peripherals defined in the MHS can have the following options:

CONFIGURATION Option
Use the CONFIGURATION option to set one of the six configurations of the MicroBlaze bus
interfaces. Refer to the MicroBlaze Bus Interfaces document for more information.

Use the following to set the configuration:

CSET attribute CONFIGURATION = value

You can use short-hand notation or descriptive notation for the configuration value. For the
short-hand notation, use an integer from 1 to 6. For the descriptive notation, use the keywords
iopb, dopb, ilmb, and dlmb joined together with underscores.

The following examples show the same configuration:

CSET attribute CONFIGURATION = 1 # Short-hand notation
CSET attribute CONFIGURATION = iopb_dopb_ilmb_dlmb # descriptive notation

HW_VER Option
Use the HW_VER option to set the hardware version, as shown in the following example:

CSET attribute HW_VER = 1.00.a

The version is specified as a literal of the form 1.00.a.

INSTANCE Option
Use the INSTANCE option to set the instance name of peripheral. This option is mandatory,
and the instance name must be specified in lower-case.

CSET attribute INSTANCE = my_uart0

MHS Signal
Options

Signals defined in the MHS file can have the following options:

PRIORITY Option
Use the PRIORITY option to set the priority of an interrupt signal:

CSET signal Interrupt = interrupt_bus, PRIORITY=num

The highest priority is “1”. The num value is the priority of the interrupt signal among all
interrupts.

Table 1: MHS Peripheral Options

Option Values Default Definition

CONFIGURATION 1, 2, 3,

4, 5, 6

3 One of six configurations of the
MicroBlaze Bus interface

HW_VER 1.00.a X Hardware version

INSTANCE X User-defined instance name
Must be lower-case

Table 2: MHS Signal Options

Option Values Default Definition

PRIORITY integer X Interrupt priority

TYPE INTERNAL

EXTERNAL

EXTERNAL Scope of signal
46 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Microprocessor Hardware Specification (MHS) Format
R

TYPE Option
Use the TYPE option to set the scope of a signal:

CSET signal signal_name = connection, TYPE=type_value

The type value is either EXTERNAL or INTERNAL. By default, only OPB and LMB signals are
defined as INTERNAL. All other signals are defined as EXTERNAL.

Design
Considerations

This section provides general design considerations.

Defining Memory Size
Memory sizes are based on C_BASEADDR and C_HIGHADDR settings. Use the following
format when defining memory size:

CSET attribute C_HIGHADDR= 0xFFFF00FF
CSET attribute C_BASEADDR= 0xFFFF0000

All memory sizes must be 2n where n is a positive integer, and 2n boundary overlaps are not
allowed.

Defining Local Memory Size
Local Memory (LM) size is based on C_LM_BASEADDR and C_LM_HIGHDADDR settings,
and only predefined sizes of LM are allowed. Otherwise, MUX stages must be used to build
bigger memories, and this can slow memory access to LM. For Virtex/Virtex-E/Spartan-II
devices, the maximum allowed memory size is 16 KBytes, which uses 32 select BlockRAMs.
For Virtex-II and Virtex-II PRO devices, the maximum allowed memory size is 64 KBytes, which
also uses 32 select BlockRAMs. Verify that your FPGA device resources can adequately
accommodate your local memory instruction and data sizes.

Use the following format to define LM size:

CSET attribute C_LM_HIGHADDR= 0x00001FFF
CSET attribute C_LM_BASEADDR= 0x00000000

LM must begin at address 0x00000000.

Internal Signals
Use the TYPE=INTERNAL attribute to set internal signals, as shown in the following example:

CSET signal mysignal = internal_connection, TYPE=INTERNAL

By default, only OPB and LMB signals are defined as INTERNAL. All other signals are defined
as EXTERNAL. External signals are available through the port-declaration of the top-level
module. All points of connection to the internal signal must have the TYPE=INTERNAL option.

Interrupt Signals
Interrupt signals are set with a priority, and the highest priority is “1”. If there is only one
interrupt defined in the platform, then you may be able to connect it directly to the MicroBlaze

Table 3: Local Memory Sizes

Architecture Memory Size (KBytes)

Spartan-II 2, 4, 8, 16

Virtex 2, 4, 8, 16

Virtex-E 2, 4, 8, 16

Virtex-II 8, 16, 32, 64

Virtex-II PRO 8, 16, 32, 64
March 2002 www.xilinx.com 47
MicroBlaze Hardware Reference Guide 1-800-255-7778

Microprocessor Hardware Specification (MHS) Format
R

processor. The MicroBlaze processor’s interrupt is level sensitive. Consequently, any other
level sensitive interrupt line from a peripheral can be connected directly. However, if the
peripheral’s interrupt line is edge sensitive, then you must use the interrupt controller. If you
connect an edge sensitive signal to a level sensitive signal, you may miss an interrupt.

Use the following format to set interrupt signals:

CSET signal mysignal = interrupt_bus, PRIORITY=n

Power Signals
Power signals are signals that are constantly driven with either VCC or GND.

Use the following format to set power signals:

CSET signal mysignal = power_signal

In this example, power_signal is either “net_vcc” or “net_gnd”. Platform Generator expands
“net_vcc” or “net_gnd” to the appropriate vector size.
48 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Summary This document describes the Microprocessor Peripheral Definition (MPD) format for
MicroBlaze.

Overview The Platform Generator allows you to partition your peripherals into one or more reusable
modules. The MPD file provides peripheral information to the Platform Generator, and has the
following characteristics:

• Lists ports and default connectivity for the OPB interface (as defined by IBM). For
example, the MPD file can include information that maps a signal UART_xferAck to
Sl_xferAck.

• Can contain attributes set by you

• Supplied by the IP provider

• Any MPD option is overwritten by the equivalent MHS assignment (refer to the
Microprocessor Hardware Specification Format document for more details)

• Individual peripheral documentation contains information on all MPD file options

Depending on your peripheral design, you may need to use Black-Box Description (BBD) or
Peripheral Analyze Order (PAO) files. The BBD file manages file locations of optimized
hardware netlists for the black-box sections of the peripheral design. The PAO file contains a
list of HDL files that are needed for synthesis, and defines the analyze order for compilation.

For more information on the Platform Generator, refer to the MicroBlaze Software Reference
Guide.

Load Path Refer to Figure 1 for a depiction of the peripheral directory structure. On a UNIX system, the
OPB peripherals reside in the following location:

$MICROBLAZE/hw/coregen

On a PC, the OPB peripherals reside in the following location:

%MICROBLAZE%\hw\coregen

To specify additional directories, you can use one of the following options:

• Current directory (where Platform Generator was launched; not where the MHS resides)

• Set the Platform Generator -P option, or the XIL_MYPERIPHERALS environment variable

Platform Generator uses a search priority mechanism to locate peripherals, as follows:

1. Search current directory

2. Search $XIL_MYPERIPHERALS/opb_peripherals (UNIX) or
%XIL_MYPERIPHERALS%\opb_peripherals (PC)

3. Search $MICROBLAZE/hw/coregen (UNIX) or %MICROBLAZE%\hw\coregen (PC)

The first two search areas (1 and 2) have the same underlying directory structure. The third
search area has the CORE Generator directory structure. For search areas 1 and 2, the
peripheral name is the name of the root directory. From the root directory, the underlying
directory structure is as follows:

Xilinx Embedded Processors: MicroBlaze

March 2002

Microprocessor Peripheral Definition Format
R

March 2002 www.xilinx.com 49
MicroBlaze Hardware Reference Guide 1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Microprocessor Peripheral Definition Format
R

data
hdl
netlist
simmodels

For example, if the XIL_MYPERIPHERALS environment is set, then the MPD, BBD, and PAO
files are found in the following location:

$XIL_MYPERIPHERALS/opb_peripherals/<peripheral>/data (UNIX)

%XIL_MYPERIPHERALS%\opb_peripherals\<peripheral>\data (PC)

The VHDL files are found in the following location:

$XIL_MYPERIPHERALS/opb_peripherals/<peripheral>/hdl/vhdl (UNIX)

%XIL_MYPERIPHERALS%\opb_peripherals\<peripheral>\hdl\vhdl (PC)

Figure 1: Peripheral Directory Structure

Using Versions
You can create multiple versions of your peripheral. The version is specified as a literal of the
form 1.00.a. At the MHS level, use the HW_VER attribute to set the hardware version. The
Platform Generator concatenates a "_v" and translates periods to underscores. The peripheral
name and HW_VER are joined together to form a name for a search level in the load path. For
example, if your peripheral is version 1.00.a, then the MPD, BBD, and PAO files are found in
the following location:

$XIL_MYPERIPHERALS/opb_peripherals/<peripheral>_v1_00_a/data (UNIX)

%XIL_MYPERIPHERALS%\opb_peripherals\<peripheral>_v1_00_a\data (PC)

X9616

$XIL_MYPERIPHERALS

drivers

my_uart my_uart

data hdl netlist simmodels

opb_peripherals

MPD BBD

PAO
50 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Microprocessor Peripheral Definition Format
R

MPD Syntax The MPD file is supplied by the IP provider and provides peripheral information to the Platform
Generator. This file lists ports and default connectivity to the OPB interface. Attributes that you
set in this file are mapped to generics for VHDL or parameters for Verilog.

Comments
You can insert comments in the MPD file without disrupting processing. The following are
guidelines for inserting comments:

• Precede comments with the pound sign (#)

• Comments can continue to the end of the line

• Comments can be anywhere on the line

Format
Use the following format at the beginning of a peripheral definition:

SELECT ip_type peripheral_name

Peripheral names are lower-case. The SELECT keyword signifies the beginning of a new
peripheral.

Use the following format for assignment statements:

CSET type name = value

Use the following format to end a peripheral definition:

END

IP Type

There are six types of IP:

• master

• slave

• master_slave

• bus

• bridge

• ip

Use the following format for a master peripheral:

SELECT master peripheral_name

Use the following format for a slave peripheral:

SELECT slave peripheral_name

Peripheral names are in lower-case.

Assignment Type

There are two types of assignments:

• attribute

• signal

Attribute

Use the following format for attributes:

CSET attribute name = value, data_type

Attribute names are case-sensitive. The MPD syntax requires the attribute data-type for VHDL.
This requirement will be eliminated in subsequent releases because Verilog does not require a
data-type for its parameters. This will allow the MPD to be written generically without
modification for a specific HDL language.
March 2002 www.xilinx.com 51
MicroBlaze Hardware Reference Guide 1-800-255-7778

Microprocessor Peripheral Definition Format
R

Signal

Use the following format for signals:

CSET signal name = default_connection, direction, bus_width

Signal names are case-sensitive.

Signal Direction

Signals have three modes. Signal mode indicates its driver direction, and if the port can be read
from within the peripheral.

The three modes and their accepted values are as follows:

• input - [input, in, i]

• output - [output, out, o]

• inout - [inout, io]

MPD Example
The following is an example MPD file:

SELECT slave opb_gpio
Generics for vhdl or parameters for verilog
cset attribute C_BASEADDR = 0x20000000, std_logic_vector
cset attribute C_HIGHADDR = 0x200000FF, std_logic_vector
cset attribute C_OPB_DWIDTH = 32, integer
cset attribute C_OPB_AWIDTH = 32, integer
cset attribute C_GPIO_WIDTH = 32, integer
cset attribute C_ALL_INPUTS = 0, integer
Global ports
CSET signal OPB_Clk = "", in
CSET signal OPB_Rst = OPB_Rst, in
OPB signals
CSET signal OPB_ABus = OPB_ABus, in, [0:C_OPB_AWIDTH-1]
CSET signal OPB_BE = OPB_BE, in, [0:C_OPB_DWIDTH/8-1]
CSET signal OPB_DBus = OPB_DBus, in, [0:C_OPB_DWIDTH-1]
CSET signal OPB_RNW = OPB_RNW, in
CSET signal OPB_select = OPB_select, in
CSET signal OPB_seqAddr = OPB_seqAddr, in
CSET signal GPIO_DBus = Sl_DBus, out, [0:C_OPB_DWIDTH-1]
CSET signal GPIO_errAck = Sl_errAck, out
CSET signal GPIO_retry = Sl_retry, out
CSET signal GPIO_toutSup = Sl_toutSup, out
CSET signal GPIO_xferAck = Sl_xferAck, out
gpio signals
CSET signal GPIO_IO = "", inout, [0:C_GPIO_WIDTH-1], ENABLE=MULTI
END

MPD Attribute
Naming
Conventions

This section provides syntax rules for attribute names for IP and systems. MPD attributes
correlate to generics for VHDL or parameters for Verilog. The attribute name must be HDL
(VHDL, Verilog) compliant. VHDL and Verilog have certain naming rules and conventions that
must be followed.
52 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Microprocessor Peripheral Definition Format
R

The Platform Generator automatically expands and populates certain reserved attributes. This
can help prevent errors when your peripheral requires information on the platform that is
generated. The following table lists the reserved attribute names:

C_FAMILY Attribute
The C_FAMILY attribute defines the FPGA device family. This attribute is automatically
populated by the Platform Generator.

Format

CSET attribute C_FAMILY = family, string

Where the family is spartan2, virtex, virtexe, or virtex2.

C_BASEADDR Attribute
The C_BASEADDR attribute defines the base address of the peripheral. This attribute is not
populated by the Platform Generator.

Format

CSET attribute C_BASEADDR = base, std_logic_vector(0 to 31)

Where base is a hexadecimal value.

C_HIGHADDR Attribute
The C_HIGHADDR attribute defines the base address of the peripheral. This attribute is not
populated by the Platform Generator.

Format

CSET attribute C_HIGHADDR = high, std_logic_vector(0 to 31)

Where high is a hexadecimal value.

C_NUM_MASTERS Attribute
The C_NUM_MASTERS attribute defines the number of masters in the system. This attribute
is automatically populated by the Platform Generator.

Format

CSET attribute C_NUM_MASTERS = num, integer

Table 1: Reserved Peripheral Attribute Names

Attribute Description
Automatic
Expansion

C_FAMILY FPGA Device Family X

C_BASEADDR Base address of peripheral

C_HIGHADDR High address of peripheral

C_LM_BASEADDR Base address of Local Memory

C_LM_HIGHADDR High address of Local Memory

C_NUM_MASTERS Number of masters X

C_NUM_SLAVES Number of slaves X

C_NUM_INTR_INPUTS Number of interrupt signals X

C_OPB_AWIDTH OPB Address width X

C_OPB_DWIDTH OPB Data width X
March 2002 www.xilinx.com 53
MicroBlaze Hardware Reference Guide 1-800-255-7778

Microprocessor Peripheral Definition Format
R

Where num is an integer value.

C_NUM_SLAVES Attribute
The C_NUM_SLAVES attribute defines the number of slaves in the system. This attribute is
automatically populated by the Platform Generator.

Format

CSET attribute C_NUM_SLAVES = num, integer

Where num is an integer value.

C_NUM_INTR_INPUTS Attribute
The C_NUM_INTR_INPUTS attribute defines the number of interrupt inputs. This attribute is
automatically populated by the Platform Generator.

Format

CSET attribute C_NUM_INTR_INPUTS = num, integer

Where num is an integer value.

C_OPB_AWIDTH Attribute
The C_NUM_AWIDTH attribute defines the OPB address width. This attribute is automatically
populated by the Platform Generator.

Format

CSET attribute C_OPB_AWIDTH = num, integer

Where num is an integer value.

C_OPB_DWIDTH Attribute
The C_NUM_DWIDTH attribute defines the OPB data width. This attribute is automatically
populated by the Platform Generator.

Format

CSET attribute C_OPB_DWIDTH = num, integer

Where num is an integer value.

MPD Signal
Naming
Conventions

This section provides naming conventions for OPB signal names. These conventions are
flexible to accommodate MicroBlaze and other systems that have more than one OPB and
more than one OPB port per component.

For peripheral OPB ports, the names must start with a capital letter, and must be HDL (VHDL
or Verilog) compliant. As with any language, VHDL and Verilog have certain naming rules and
conventions that you must follow.

Global Ports
The names for the global ports of a peripheral (such as clock and reset signals) are
standardized. The name for the clock signal is OPB_Clk, and the reset signal is OPB_Rst. You
can use any name for other global ports (such as the interrupt signal).

Master OPB Ports
OPB V2.0 naming conventions should be followed for that part of the identifier following the last
underscore in the name.
54 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Microprocessor Peripheral Definition Format
R

OPB Master Outputs

For interconnection to the OPB, all masters must provide the following outputs for each
connection to the OPB.

<Mn>_ABus
<Mn>_BE
<Mn>_busLock
<Mn>_DBus
<Mn>_request
<Mn>_RNW
<Mn>_select
<Mn>_seqAddr

Where <Mn> is a meaningful name or acronym for the master output. An additional
requirement on <Mn> is that it must not contain the string, “OPB” (upper or lower case or mixed
case), so that master outputs are not confused with bus outputs.

IM_request
Bridge_request
DMAE_request
O2OB_request

OPB Master Inputs

For interconnection to the OPB, all masters must provide the following inputs for each
connection to the OPB.

<nOPB>_DBus
<nOPB>_errAck
<nOPB>_MGrant
<nOPB>_retry
<nOPB>_timeout
<nOPB>_xferAck

Where <nOPB> is a meaningful name or acronym for the master input. An additional
requirement on <nOPB> is that the last three characters must contain the string, “OPB” (upper
or lower case or mixed case).

IOPB_DBus
DOPB_DBus
OPB_DBus
Bus1_OPB_DBus

Slave OPB Ports
OPB V2.0 naming conventions should be followed for that part of the identifier following the last
underscore in the name.

OPB Slave Outputs

For interconnection to the OPB, all slaves must provide the following outputs for each
connection to the OPB:

<Sln>_DBus
<Sln>_errAck
<Sln>_retry
<Sln>_toutSup
<Sln>_xferAck

Where <Sln> is a meaningful name or acronym for the slave output. An additional requirement
on <Sln> is that it must not contain the string, “OPB” (upper or lower case or mixed case), so
that slave outputs will not be confused with bus outputs.

TMR_xferAck
UART_xferAck
INTC_xferAck
MemCon_xferAck
March 2002 www.xilinx.com 55
MicroBlaze Hardware Reference Guide 1-800-255-7778

Microprocessor Peripheral Definition Format
R

OPB Slave Inputs

For interconnection to the OPB, all slaves must provide the following inputs for each connection
to the OPB:

<nOPB>_ABus
<nOPB>_BE
<nOPB>_DBus
<nOPB>_RNW
<nOPB>_select
<nOPB>_seqAddr

Where <nOPB> is a meaningful name or acronym for the slave input. An additional
requirement on <nOPB> is that the last three characters must contain the string, “OPB” (upper
or lower case or mixed case).

OPB_DBus
IOPB_DBus
DOPB_DBus
Bus1_OPB_DBus

MPD Reserved
Signal
Connections

The Platform Generator establishes connectivity of the OPB and LMB busses to peripherals
through a common set of signal connections.

Global Ports
For interconnection to the global ports:

CSET signal OPB_Rst = OPB_Rst, in

Master OPB Ports
For interconnection to the OPB, all masters must provide the following connections for each
connection to the OPB:

CSET signal <Mn>_ABus = M_ABus, out, [0:C_OPB_AWIDTH]
CSET signal <Mn>_BE = M_BE, out, [0:C_OPB_DWIDTH/8-1]
CSET signal <Mn>_busLock = M_busLock, out
CSET signal <Mn>_DBus = M_DBus, out, [0:C_OPB_DWIDTH-1]
CSET signal <Mn>_request = M_request, out
CSET signal <Mn>_RNW = M_RNW, out
CSET signal <Mn>_select = M_select, out
CSET signal <Mn>_seqAddr = M_seqAddr, out
CSET signal <nOPB>_DBus = OPB_DBus, in, [0:C_OPB_DWIDTH-1]
CSET signal <nOPB>_errAck = OPB_errAck, in
CSET signal <nOPB>_MGrant = OPB_MGrant, in
CSET signal <nOPB>_retry = OPB_retry, in
CSET signal <nOPB>_timeout = OPB_timeout, in
CSET signal <nOPB>_xferAck = OPB_xferAck, in

Slave OPB Ports
For interconnection to the OPB, all slaves must provide the following connections for each
connection to the OPB:

CSET signal <Sln>_DBus = Sl_DBus, out, [0:C_OPB_DWIDTH-1]
CSET signal <Sln>_errAck = Sl_errAck, out
CSET signal <Sln>_retry = Sl_retry, out
CSET signal <Sln>_toutSup = Sl_toutSup, out
CSET signal <Sln>_xferAck = Sl_xferAck, out
CSET signal <nOPB>_ABus = OPB_ABus, in, [0:C_OPB_AWIDTH-1]
CSET signal <nOPB>_BE = OPB_BE, in, [0:C_OPB_DWIDTH/8-1]
CSET signal <nOPB>_DBus = OPB_DBus, in, [0:C_OPB_DWIDTH-1]
CSET signal <nOPB>_RNW = OPB_RNW, in
CSET signal <nOPB>_select = OPB_select, in
56 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Microprocessor Peripheral Definition Format
R

CSET signal <nOPB>_seqAddr = OPB_seqAddr, in

LMB Ports
Only the MicroBlaze processor is allowed interconnection to the LMB. The following
connections are reserved:

CSET signal Instr_Addr = Instr_Addr, out, [0:31]
CSET signal Instr = Instr, in, [0:31]
CSET signal IFetch = IFetch, out
CSET signal I_AS = I_AS, out
CSET signal IReady = IReady, in
CSET signal Data_Addr = Data_Addr, out, [0:31]
CSET signal Data_Read = Data_Read, in, [0:31]
CSET signal Data_Write = Data_Write, out, [0:31]
CSET signal D_AS = D_AS, out
CSET signal Read_Strobe = Read_Strobe, out
CSET signal Write_Strobe = Write_Strobe, out
CSET signal DReady = DReady, in
CSET signal Byte_Enable = Byte_Enable, out, [0:3]

MPD Peripheral
Options

Peripherals defined in the MPD file can have the following options:

STYLE Option
The STYLE option defines the design composition of the peripheral.

If you have only optimized hardware netlists, you must specify the BLACKBOX value within the
MPD file. In this case, only the BBD file is read by the Platform Generator.

If you have a mix of optimized hardware netlists and HDL files, you must specify the MIX value
within the MPD file. In this case, the PAO and BBD files are read by the Platform Generator.

If you have only HDL files, you must specify the HDL value within the MPD file. In this case,
only the PAO file is read by the Platform Generator.

Format

SELECT IP peripheral_name, STYLE=value

Where value is BLACKBOX, MIX, or HDL. The default value is HDL.

Table 2: MPD Peripheral Options

Option Values Default Definition

STYLE BLACKBOX

MIX

HDL

HDL Design style

EDIF TRUE

FALSE

FALSE Synthesize HDL to a hardware
implementation netlist

INBYTE TRUE

FALSE

X The functions inbyte() and
peripheral_inbyte() are defined

OUTBYTE TRUE

FALSE

X The functions outbyte() and
peripheral_outbyte() are defined
March 2002 www.xilinx.com 57
MicroBlaze Hardware Reference Guide 1-800-255-7778

Microprocessor Peripheral Definition Format
R

EDIF Option
In hierarchal mode, this option directs the Platform Generator to write an EDIF file for the
peripheral. In flatten mode, the EDIF option is ignored since the entire system is synthesized to
an EDIF file.

Format

SELECT IP peripheral_name, EDIF=TRUE

INBYTE or OUTBYTE Option
The INBYTE and OUTBYTE options indicate that the peripheral can act as an input or output
device, respectively. These options indicate to the Library Generator (libgen) that the
peripheral has the peripheral_name_inbyte(), inbyte(), peripheral_name_outbyte(), and
outbyte() functions defined.

The function outbyte() is used to write a single byte to the designated output device. The
function inbyte() is used to read a singe byte from the designated input device.

Format

SELECT IP peripheral_name, INBYTE=boolean_value, OUTBYTE=boolean_value

Where boolean_value is either TRUE or FALSE.

Refer to the MicroBlaze Libraries documentation for more information.

MPD Signal
Options

Signals defined in the MPD file can have the following options:

BUS Option
The bus ownership of a signal is specified by the BUS option.

Format

CSET signal IOPB_timeout = OPB_timeout, in,, BUS=bus_label

Where the bus_label is a string.

Table 3: MPD Signal Options

Option Values Default Definition

BUS string X Bus ownership of a signal

EDGE RISING

FALLING

X Interrupt edge sensitivity

ENABLE MULTI

SINGLE

SINGLE 3-state enable control

ENDIAN BIG

LITTLE

BIG Endianess

INITIALVAL VCC

GND

GND Driver value on unconnected inputs

LEVEL HIGH

LOW

X Interrupt level sensitivity

TYPE INTERNAL

EXTERNAL

EXTERNAL Scope of signal
58 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Microprocessor Peripheral Definition Format
R

EDGE Option
The edge sensitivity of an interrupt signal is specified by the EDGE option.

Format

CSET signal Interrupt = “”, out,, EDGE=edge_value, TYPE=INTERNAL

Where edge_value is RISING or FALLING.

ENABLE Option
3-state signals can have multi-bit enable control, or a single bit enable control on the bus. This
is specified with the ENABLE option.

Format

CSET signal mysignal = “”, inout, [0:31], ENABLE=enable_value

Where enable_value is SINGLE or MULTI. SINGLE is the default value.

Refer to the HDL Design Considerations section for more information on designing 3-state
signals at the HDL level.

ENDIAN Option
The endianess of a signal is specified by the ENDIAN option.

Format

CSET signal mysignal = “”, out,[A:B], ENDIAN=endian_value

Where endian_value is BIG or LITTLE. BIG is the default value.

INITIALVAL Option
The driver val on unconnected input signals is specified by the INITIALVAL option.

Format

CSET signal mysignal = “”, in,, INITIALVAL=init_value

Where init_value is VCC or GND. GND is the default value.

LEVEL Option
The level sensitivity of an interrupt signal is specified by the LEVEL option.

Format

CSET signal Interrupt = “”, out,, LEVEL=level_value

Where level_value is HIGH or LOW.

TYPE Option
The scope of a signal is set with the TYPE option

Format

CSET signal mysignal = "", out,, TYPE=type_value

Where type_value is either EXTERNAL or INTERNAL. By default, only OPB and LMB signals
are defined as INTERNAL. All other signals are defined as EXTERNAL.

Black-Box
Description
(BBD) File

The BBD (Black-Box Description) file is supplied by the IP provider and supplies input to the
Platform Generator. The BBD file manages the file locations of optimized hardware netlists for
the black-box sections of your peripheral design.

The value of the STYLE option in the MPD file determines whether or not you need a BBD file.
March 2002 www.xilinx.com 59
MicroBlaze Hardware Reference Guide 1-800-255-7778

Microprocessor Peripheral Definition Format
R

The black-box simulation netlists for HDL simulation must be moved to the simmodels
directory, and the black-box hardware netlists for implementation must be moved to the netlist
directory. The simmodels and netlist directories can have their own underlying directory
structure, however, they must mirror each other.

Comments
You can insert comments in the BBD file without disrupting processing. Comments begin with
a pound sign (#) and continue to the end of the line.

Format
The BBD format is a look-up table chart that lists netlist files. The first line is the header of the
look-up table. There can be as many entries as necessary in the header to make a selection.
Header entries are tailored by MPD options. The last column of the table must be the FILES
column.

For implementation, the last column lists the relative path to the file from:
$XIL_MYPERIPHERALS/opb_peripherals/<ip>/netlist (UNIX)

%XIL_MYPERIPHERALS%\opb_peripherals\<ip>\netlist (PC)

For simulation, the last column lists the relative path to the file from:
$XIL_MYPERIPHERALS/opb_peripherals/<ip>/simmodels (UNIX)

%XIL_MYPERIPHERALS%\opb_peripherals\<ip>\simmodels (PC)

The netlist and simmodels directories can have their own underlying directory structure
because the BBD file manages the relative file locations. However, the directories must mirror
each other.

Each file is listed with the file extension of the hardware implementation netlist. Since
implementation netlists have multiple file extensions (such as, .edn, .edf, .edo, .ngo), it is
important to identify the format. For simulation, the Platform Generator uses the file extension
.vhd for VHDL simulation and .v for Verilog.

BBD Example
The following is an example BBD file:

C_FAMILY CONFIGURATION FILES
virtex 1 virtex/microblaze_1.edf
virtex 2 virtex/microblaze_2.edf
virtex 3 virtex/microblaze_3.edf
virtex 4 virtex/microblaze_4.edf
virtex 5 virtex/microblaze_5.edf
virtex 6 virtex/microblaze_6.edf
spartan2 1 virtex/microblaze_1.edf
spartan2 2 virtex/microblaze_2.edf
spartan2 3 virtex/microblaze_3.edf
spartan2 4 virtex/microblaze_4.edf
spartan2 5 virtex/microblaze_5.edf
spartan2 6 virtex/microblaze_6.edf
virtexe 1 virtex/microblaze_1.edf
virtexe 2 virtex/microblaze_2.edf
virtexe 3 virtex/microblaze_3.edf
virtexe 4 virtex/microblaze_4.edf
virtexe 5 virtex/microblaze_5.edf
virtexe 6 virtex/microblaze_6.edf
virtex2 1 virtex2/microblaze_1.edf
virtex2 2 virtex2/microblaze_2.edf
virtex2 3 virtex2/microblaze_3.edf
virtex2 4 virtex2/microblaze_4.edf
virtex2 5 virtex2/microblaze_5.edf
virtex2 6 virtex2/microblaze_6.edf
60 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Microprocessor Peripheral Definition Format
R

Peripheral
Analyze Order
(PAO) File

A PAO (Peripheral Analyze Order) file is supplied by the IP provider and supplies information to
the Platform Generator. This file contains a list of HDL files that are needed for synthesis, and
defines the analyze order for compilation. The value of the STYLE option in the MPD file
determines whether or not a PAO file is required. The HDL files used for synthesis must be
moved to the hdl directory.

Comments
You can insert comments in the PAO file without disrupting processing. The following are
guidelines for inserting comments:

• Precede comments with the pound sign (#)

• Comments can continue to the end of the line

• Comments can be anywhere on the line

Format
Use the following format:

lib library_name hdl_file_basename

Library_name specifies the unique library for the peripheral, and HDL file names are specified
without a file extension. All names are in lower-case.

If your peripheral requires a certain version of a library, then the library name is given with the
version appended. For example if you request version 1.00.a, then the library name is:

library_name_v1_00_a

PAO Example
The following is an example PAO file:

lib common_v1_00_a common_types_pkg
lib common_v1_00_a pselect
lib opb_gpio_v1_00_a gpio_core
lib opb_gpio_v1_00_a opb_gpio

HDL Design
Considerations

This section includes HDL design considerations.

Scalable Data path
Using an MPD option declaration, you can automatically scale data path width. Bus
expressions are evaluated as arithmetic equations.

Format

CSET signal name = default_connection, direction, [A:B]

Where A and B are an arithmetic expression.

MPD Example

The following is an example MPD file:

SELECT IP my_peripheral
Generics for vhdl or parameters for verilog
CSET attribute C_BASEADDR = 0xB00000, std_logic_vector(0 to 31)
CSET attribute C_MY_PERIPH_AWIDTH = 17, integer
Global ports
CSET signal OPB_Clk = “”, in
CSET signal OPB_Rst = “”, in
My peripheral signals
CSET signal MY_ADDR = “”, out, [0:C_MY_PERIPH_AWIDTH-1]
OPB signals
.

March 2002 www.xilinx.com 61
MicroBlaze Hardware Reference Guide 1-800-255-7778

Microprocessor Peripheral Definition Format
R

.
END

By default, if the vectors are larger than one bit, the Platform Generator determines the range
specification on buses as either big-endian or little-endian. However, if the vector is one-bit
width, then the range cannot be determined, and Platform Generator defaults to big-endian
style notation.

To change this default behavior, use the ENDIAN option.

Format

CSET signal mysignal = “”, in, [0:0], ENDIAN=LITTLE

This builds the VHDL equivalent:

mysignal : in std_logic_vector(0 downto 0);

Internal Signals
Set internal signals with the TYPE=INTERNAL option.

Format

CSET signal mysignal = "", out,, TYPE=INTERNAL

By default, only OPB and LMB signals are defined as INTERNAL. All other signals are defined
as EXTERNAL. External signals are available through the port-declaration in the top-level
module.

Interrupt Signals
Interrupt signals are identified by the EDGE or LEVEL option.

3-state (InOut) Signals
At the MHS/MPD level, there is a listing for an inout port in the MPD file that allows you to map
to it in the MHS file. In the MPD file, a 3-state signal is identified by the inout direction mode,
and the port name must be ioname.

Figure 2: IOBUF Implementation

The Platform Generator expands the inout port in the MPD file to three ports in the port
declaration section of the HDL file, and writes out the RTL code to infer the IOBUF. This port
expansion occurs because if the top-level is synthesized without IO insertion, the 3-states on
the inout ports are inferred as BUFTs at the CLB level. However, they should be inferred as
IOBUFs at the IOB level. Platform Generator infers the 3-states at the top-level to ensure that
the inout ports are always associated to the IOBUF.

Inout ports are currently defined at the top-level since the only internal signals are those
defined as an input or an output. There are no inout signals defined internally that need a
BUFT.

It is important to note that the 3-state enables are all active-low to allow a direct connection to
the OBUFT of the IOBUF.

X9617

MY_IP
IOBUF

T

I

O

O

O

I

IPIO_T

IPIO_O IPIO

IPIO_I
62 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Summary This document provides the design specification for the On-Chip Peripheral Bus (OPB) Arbiter.
This document applies to the following peripherals:

Introduction The OPB Arbiter design described in this document incorporates the features contained in the
IBM On-chip Peripheral Bus Arbiter Core manual (version 1.5) for 32-bit implementation. This
manual is referenced throughout this document and is considered the authoritative
specification. Any differences between the IBM OPB Arbiter implementation and the Xilinx OPB
Arbiter implementation are explained in the Specification Exceptions section.

The Xilinx OPB Arbiter design allows you to tailor the OPB Arbiter to suit your application by
setting certain parameters to enable/disable features. In some cases, setting these parameters
may cause the Xilinx OPB Arbiter design to deviate slightly from the IBM OPB Arbiter
specification. These parameters are described in the OPB Arbiter Design Parameters
section.

OPB Arbiter
Overview

Features
The OPB Arbiter is a soft IP core designed for Xilinx FPGAs and contains the following
features:

• Optional OPB slave interface (included in design via a design parameter)

• OPB Arbitration

- arbitrates between 1 - 16 OPB Masters (the number of masters is parameterizable)

- arbitration priorities among masters programmable via register write

- priority arbitration mode configurable via a design parameter
- Fixed priority arbitration with processor access to read/write Priority Registers
- Dynamic priority arbitration implementing a true least recent used (LRU) algorithm

• Two bus parking modes selectable via Control Register write:

- park on selected OPB master (specified in Control Register)

- park on last OPB master which was granted OPB access

• Watchdog timer which asserts the OPB time-out signal if a slave response is not detected
within 16 clock cycles

• Registered or combinational Grant outputs configurable via a design parameter

Xilinx Embedded Processors: OPB Peripherals

March 2002

On-Chip Peripheral Bus (OPB) Arbiter
Design Specification

R

opb_arbiter v1.02c
March 2002 www.xilinx.com 63
 1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this fea-
ture, application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you
may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any war-
ranties or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

OPB Arbitration Protocol
OPB Bus arbitration uses the following protocol:

1. An OPB master asserts its bus request signal.

2. The OPB Arbiter receives the request and outputs an individual grant signal to each master
according to its priority and the state of the other requests.

3. An OPB master samples its grant signal at the rising edge of the OPB clock. In the
following cycle, the OPB master initiates a data transfer between the master and a slave by
asserting its select signal.

The OPB Arbiter only issues a bus grant signal during valid arbitration cycles which are defined
as either:

• Idle

The OPB_select and OPB_busLock are deasserted, indicating that no data transfer is in
progress.

• Overlapped arbitration cycle

The OPB_xferAck is asserted, indicating the final cycle in a data transfer, and
OPB_busLock is not asserted. Arbitration in this cycle allows another master to begin a
transfer in the following cycle, avoiding the need for a dead cycle on the bus.

You can configure the Xilinx OPB Arbiter to have either registered or combinational grant
outputs. Registered grant outputs are asserted one clock after each arbitration cycle resulting
in one dead cycle on the bus. However, registered grant outputs allow the OPB bus to run at
higher clock rates.

Figure 1 shows the fixed OPB arbitration protocol with combinational grant outputs, Figure 2
shows the fixed OPB arbitration protocol when the OPB Arbiter has been parameterized to
have registered grant outputs.

Figure 1: OPB Fixed Bus Arbitration - Combinational Grant Outputs

Figure 2: OPB Fixed Bus Arbitration - Registered Grant Outputs

Cycles

OPBClk

M_request[1]

OPB_MGrant[1]

M1_busLock

M1_select

OPB_xferAck

0 1 2 3 4 5 6

Cycles

OPBClk

M_request[1]

OPB_MGrant[1]

M1_busLock

M1_select

OPB_xferAck

0 1 2 3 4 5 6
64 www.xilinx.com March 2002
 1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

An OPB master device need not deassert its request upon receipt of a bus grant signal if it has
multiple bus transfer cycles to perform. Figure 3 shows an OPB arbitration cycle in which an
OPB master asserts bus request continuously for four data transfer cycles. The OPB Arbiter
has been parameterized for fixed priority arbitration and combinational grant outputs, therefore
bus grant is asserted combinationally during valid arbitration cycles.

When the OPB Arbiter has been parameterized for registered grant outputs and fixed priority,
the bus grants are registered as shown in the following figure.

Even if an OPB master asserts request continuously, it will not necessarily receive a valid grant
signal. Other OPB masters with higher bus priority may request the OPB and will be granted
the bus according to OPB arbiter priority. If an OPB master device needs a non-interruptible
sequence of bus cycles, it can use the bus lock signal for this purpose. Bus locking is described
later in this document.

The OPB Arbiter supports both dynamic priority arbitration, implementing a Least Recently
Used (LRU) algorithm, and fixed priority arbitration, both are described in more detail later in
this document. Figure 5 shows multiple bus request or overlapped bus arbitration when the
OPB arbiter is using fixed priority arbitration and combinational grant outputs. Both OPB Master
1 and OPB Master 2 simultaneously request the bus. Master 1 has a higher priority and is
granted the bus. During cycle 2, Master 1 completes its first transaction and Master 2 is granted
the bus for cycle 3. Thus, during cycle 2, the arbitration for the bus is overlapped with a data
transfer. This overlapped bus arbitration improves the bandwidth of the bus.

Figure 3: Continuous Master Bus Request - Fixed priority, Combinational Grant Outputs

Figure 4: Continuous Master Bus Request - Fixed priority, Registered Grant Outputs

Cycles

OPBClk

M_request[1]

OPB_MGrant[1]

M1_busLock

M1_select

OPB_xferAck

0 1 2 3 4 5 6

Cycles

OPBClk

M_request[1]

OPB_MGrant[1]

M1_busLock

M1_select

OPB_xferAck

7 80 1 2 3 4 5 6
March 2002 www.xilinx.com 65
1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

With registered grant outputs, there is a cycle between bus grant signals as shown in Figure 6.
Using registered grant outputs from the OPB arbiter reduces the number of logic levels
between registers and allows the OPB bus to run at a higher clock rate.

Figure 5: Multiple Bus Requests - Fixed Priority Arbitration, Combinational Grant
Outputs

Figure 6: Multiple Bus Requests - Fixed Priority Arbitration, Registered Grant Outputs

Cycles

OPBClk

M_request[1]

M_request[2]

OPB_MGrant[1]

OPB_MGrant[2]

OPB_select

M1_select

M2_select

OPB_xferAck

0 1 2 3 4 5 6 7 8

Cycles

OPBClk

M_request[1]

M_request[2]

OPB_MGrant[1]

OPB_MGrant[2]

OPB_select

M1_select

M2_select

OPB_xferAck

0 1 2 3 4 5 6 7 8 9 10 11 12
66 www.xilinx.com March 2002
 1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

OPB Arbiter
Design
Parameters

To obtain an OPB Arbiter that is uniquely tailored to your system, you can parameterize certain
features in the OPB Arbiter design. This allows you to have a high performance design that only
utilizes the resources required by your system. The features that you can parameterize in the
Xilinx OPB Arbiter design are shown in the following table.

Table 1: OPB Arbiter Design Parameters

Grouping/Number Feature/Description Parameter Name Allowable Values
Default
Value VHDL Type

Arbiter
Features

G1 Number of OPB
Masters

C_NUM_MASTERS 1(1) - 16 4 integer

G2 Priority Mode C_DYNAM_PRIORITY 1 = Dynamic

0 = Fixed

0 = Fixed integer

G3 Registered Grant
Outputs

C_REG_GRANTS 1 = Registered Grant
Outputs

0 = Combinational
Grant Outputs(2)

1 =
Registered
Grant
Outputs

integer

G4 Bus Parking C_PARK 1 = Bus parking
supported(3)

0 = Bus parking not
supported

0 = Bus
parking not
supported

integer

OPB
Interface

G5 OPB Slave Interface C_PROC_INTRFCE 1 = OPB slave
interface supported

0 = OPB slave
interface not
supported(4)

0 = OPB
slave
interface
not
supported

integer

G6 OPB Arbiter Base
Address

C_BASEADDR Valid Address
Range(7)

None(5) std_logic_vector

G7 OPB Data Bus
Width

C_OPB_DWIDTH 8,16,32,64,128 32 integer

G8 OPB Address Bus
Width

C_OPB_AWIDTH 16 - 32 32 integer

G9 Device Block ID(6) C_DEV_BLK_ID See note 6. 0 integer

G10 Module Identification
Register Enable(6)

C_DEV_MIR_ENABLE See note 6. 0 integer

G11 OPB High Address C_HIGHADDR Address range must
be a power of 2 and
>= 0x1FF(7)

None(5) integer

Notes:
1. When C_NUM_MASTERS = 1, no arbitration is necessary, however, the watchdog timer is included in the arbiter and is needed for

the OPB. In this case, all other parameters are meaningless.
2. C_REG_GRANTS should only be set to 0 (indicating that the Grant outputs are combinational) if the desired OPB frequency is less

than the fMAX specified for this parameter.
3. When bus parking is supported, the parking mode (park on last master or park on master id) is set in the OPB Arbiter Control Register.

If C_PROC_INTRFCE is 0, the parking mode is park on last master.
4. When C_PROC_INTRFCE is 0, none of the OPB Arbiter registers are accessible.
5. No default value will be specified for C_BASEADDR to insure that the actual value is set, i.e. if the value is not set, a compiler error

will be generated.
6. Address range specified by C_BASEADDR and C_HIGHADDR must be at least 0x1FF and must be a power of 2.
March 2002 www.xilinx.com 67
1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

Allowable Parameter Combinations
The only restriction on parameter combinations in the Xilinx OPB Arbiter design is that the
address range specified by C_BASEADDR and C_HIGHADDR is a power of 2. To allow for the
register offset within the OPB Arbiter design, the range specified by C_BASEADDR and
C_HIGHADDR must be at least 0x1FF.

The clock frequency of the OPB specified in the Platform Builder tool must be low enough to
allow for combinational Grant outputs. Therefore, the parameter C_REG_GRANTS can only be
set to 0 if the value of the OPB frequency is less than the fMAX specified for this parameter.

The number of OPB masters can be parameterized to 1 master. Though no arbitration is
necessary when there is only one OPB master, the OPB Arbiter contains the watchdog timer for
the OPB and is therefore needed in the system. When there is only 1 OPB master, there will be
no Control Register or Priority Registers, therefore, there will be no OPB slave interface on the
OPB Arbiter. Since there will not be an OPB slave interface, the OPB Arbiter, when
parameterized for 1 OPB master, will not have a Configuration ROM (CROM) entry. When
C_NUM_MASTERS is set to 1, all other parameters are meaningless. Also, when
C_PROC_INTRFCE is set to 0, the OPB Arbiter registers are not accessible and there is no
CROM entry for the OPB Arbiter.

OPB Arbiter I/O
Signals

The I/O signals for the OPB Arbiter are listed in Table 2. The interfaces referenced in this table
are shown in Figure 7 in the OPB Arbiter block diagram.

Table 2: OPB Arbiter I/O Signals

Grouping Signal Name Interface I/O
Initial
State Description Page

OPB Slave
Signals

P1 ARB_DBus(0:C_OPB_DWIDTH-1) IPIF O 0 Arbiter output data bus 76

P2 ARB_xferAck IPIF O 0 Arbiter transfer acknowledge 76

P3 ARB_Retry IPIF O 0 Arbiter retry 76

P4 ARB_ToutSup IPIF O 0 Arbiter timeout suppress 76

P5 ARB_ErrAck IPIF O 0 Arbiter error acknowledge 76

P6 OPB_ABus(0:C_OPB_AWIDTH-1) IPIF I OPB address bus 76

P7 OPB_BE(0:C_OPB_DWIDTH/8-1) IPIF I OPB byte enables 76

P8 OPB_DBus(0:C_OPB_DWIDTH-1) IPIF I OPB data bus 76

P9 OPB_RNW IPIF I Read not Write (OR of all master RNW
signals)

76

P10 OPB_seqAddr IPIF I OPB sequential address 76

Arbitration
Signals

P11 M_request[0:C_NUM_MASTERS-1](1) Arbitration Logic I Request from OPB Masters 80

P12 OPB_xferAck Arbitration Logic I Transfer Acknowledge indicating end of
data transfer cycle (OR of all slave
xferAcks)

80

P13 OPB_select Arbitration Logic

Watchdog Timer

I Master has taken control of the bus (OR
of all master selects)

80,86

P14 OPB_retry Watchdog Timer I Bus cycle retry (OR of all slave retrys) 86

P15 OPB_toutSup Watchdog Timer I Suppress timeout (OR of all slave
toutSups)

86

P16 OPB_timeout Watchdog Timer O 0 Timeout signal for OPB 86

P17 OPB_busLock Park/Lock Logic I Bus lock (OR of all master buslocks) 82

P18 OPB_MGrant[0:C_NUM_MASTERS-1](1) Park/Lock Logic O 0 Grant to OPB Masters 82

System P19 OPB_Clk System I System clock

P20 OPB_Rst System I System Reset (active high)

Notes:
1. Name has been modified slightly from that in the IBM OPB Arbiter specification to support parameterization of the number of masters
68 www.xilinx.com March 2002
 1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

The signal, ARB_DBusEn, is not an output of the Xilinx OPB Arbiter as the IPIF module
internally gates the OPB Arbiter data bus with the enable signal.

The following signals listed in the IBM OPB Arbiter core are not supported:

• ARB_sleepReq -the FPGA implementation of the OPB bus will not support sleep modes

• LSSD_AClk - FPGA implementation does not support scan

• LSSD_BClk - FPGA implementation does not support scan

• LSSD_CClk - FPGA implementation does not support scan

• LSSD_scanGate - FPGA implementation does not support scan

• LSSD_scanIn - FPGA implementation does not support scan

• LSSD_scanOut - FPGA implementation does not support scan

Parameter -
Port
Dependencies

The width of many of the OPB Arbiter signals depends on the number of OPB masters in the
design. In addition, when certain features are parameterized away, the related input signals are
unconnected and the related output signals are set to a constant values. The dependencies
between the OPB Arbiter design parameters and I/O signals are shown in Table 3.

Table 3: Parameter-Port Dependencies

Name Affects Depends Relationship Description

Design
Parameters

G1 C_NUM_MASTERS G2-G8

P1,P2

P6-P11

P17,P18

G4, G5,
G7

The width of the request and grant buses are set by the
number of masters in the design.

The only logic present in the OPB Arbiter design when
C_NUM_MASTERS=1 is the watchdog timer, therefore,
many parameters and I/O signals are unconnected in
this case.

If C_OPB_DWIDTH=8 and C_PARK=1 and
C_PROC_INTRFCE=1 then C_NUM_MASTERS must
be <=4 because there is only 2 bits for the park master
id in the Control Register.

G2 C_DYNAM_PRIORITY G1 Unconnected if C_NUM_MASTERS=1.

G3 C_REG_GRANTS G1 Unconnected if C_NUM_MASTERS=1.

G4 C_PARK G1 G1 Unconnected if C_NUM_MASTERS=1.

G5 C_PROC_INTRFCE G1,G6-G8,
G11

P1, P2

P6-P10

G1 Unconnected if C_NUM_MASTERS=1.

G6 C_BASEADDR G1,G5,

G11

Unconnected if C_PROC_INTRFCE=0 or
C_NUM_MASTERS=1. Range specified by
C_BASEADDR and C_HIGHADDR must be at least
0x1FF.

G7 C_OPB_DWIDTH G1, P1, P8 G1,G5 Unconnected if C_PROC_INTRFCE=0 or
C_NUM_MASTERS=1.

G8 C_OPB_AWIDTH P6,P7 G1,G5 Unconnected if C_PROC_INTRFCE=0 or
C_NUM_MASTERS=1.

G9 C_DEV_BLK_ID G1,G5 Unconnected if C_PROC_INTRFCE=0 or
C_NUM_MASTERS=1.

G10 C_DEV_MIR_ENABLE G1,G5 Unconnected if C_PROC_INTRFCE=0 or
C_NUM_MASTERS=1.

G11 C_HIGHADDR G1,G5,

G6

Unconnected if C_PROC_INTRFCE=0 or
C_NUM_MASTERS=1. Range specified by
C_BASEADDR and C_HIGHADDR must be at least
0x1FF.
March 2002 www.xilinx.com 69
1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

OPB Arbiter
Register
Descriptions

The OPB Arbiter contains addressable registers for read/write operations as shown in Table 4
if the design has been parameterized to support a processor interface. The base address for
these registers is set in the parameter C_BASEADDR. The registers are located at an offset of
0x00000100 from C_BASEADDR. Each register is addressable on a 32-bit boundary.

Each priority level has a unique Priority Register which contains the master id for the master at
that priority level. The Priority Registers are readable and writable by the processor. The
number of priority levels and hence the number of Priority Registers will vary with the
parameter C_NUM_MASTERS.

I/O Signals P1 ARB_DBus(0:C_OPB_DWIDTH-1) G1,G5,

G7

Width varies with the size of the OPB Data bus.

This output is grounded if C_PROC_INTRFCE = 0 or
C_NUM_MASTERS=1.

P2 ARB_xferAck G1,G5 This output is grounded if C_PROC_INTRFCE = 0 or
C_NUM_MASTERS=1.

P3 ARB_Retry This output is always grounded.

P4 ARB_ToutSup This output is always grounded.

P5 ARB_ErrAck This output is always grounded.

P6 OPB_ABus(0:C_OPB_AWIDTH-1) G1,G5,

G8

Width varies with the size of the OPB Address bus.

This input is unconnected if C_PROC_INTRFCE = 0 or
C_NUM_MASTERS = 1.

P7 OPB_BE(0:C_OPB_DWIDTH/8-1) G1,G5,

G8

Width varies with the size of the OPB Address bus.

This input is unconnected if C_PROC_INTRFCE = 0 or
C_NUM_MASTERS = 1.

P8 OPB_DBUS(0:C_OPB_DWIDTH-1) G1,G5,

G7

Width varies with the size of the OPB Data bus.

This input is unconnected if C_PROC_INTRFCE = 0 or
C_NUM_MASTERS = 1.

P9 OPB_RNW G1,G5 This input is unconnected if C_PROC_INTRFCE = 0 or
C_NUM_MASTERS = 1.

P10 OPB_seqAddr G1,G5 This input is unconnected if C_PROC_INTRFCE = 0 or
C_NUM_MASTERS = 1.

P11 M_request(0:C_NUM_MASTERS-1) G1 Width varies with the number of OPB masters.

This input is unconnected if C_NUM_MASTERS=1.

P12 OPB_xferAck

P13 OPB_select

P14 OPB_retry

P15 OPB_toutSup

P16 OPB_timeout

P17 OPB_busLock G1 This input is unconnected if C_NUM_MASTERS=1.

P18 OPB_MGrant(0:C_NUM_MASTERS-1) G1 Width varies with the number of OPB masters.

This output is set to 1 if C_NUM_MASTERS = 1.

P19 OPB_Clk

P20 OPB_Rst

Table 3: Parameter-Port Dependencies (Continued)

Name Affects Depends Relationship Description
70 www.xilinx.com March 2002
 1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

Table 4 shows all of the OPB Arbiter registers and their addresses when the maximum number
of masters has been selected. In this case, 17 registers are required.

The register definitions and address locations of the Xilinx OPB Arbiter deviate from the IBM
OPB Arbiter specification. This deviation is necessary to support parameterization of the
number of OPB Masters. See section Specification Exceptions for more information.

OPB Arbiter Control Register
The OPB Arbiter Control Register is shown in Table 5 for the case where the OPB Arbiter has
been parameterized for fixed priority arbitration without bus parking with a data width of 32 bits.
The reset values for the DPE, DPERW, PEN, and PENRW bits vary based on the
parameterization of the arbitration and bus parking scheme.

Table 6 shows the Control Register bit definitions. The Control Register definition deviates from
the IBM OPB Arbiter specification. This deviation is necessary due to the fact that the Park
Master ID (PID) field will vary in width based on the number of masters supported in the design.
This field has been shifted so that it is LSB aligned and can be read easily by the software as
an integer value. Also, the DPERW and PENRW bits have been added to provide information
to the processor about the parameters chosen for the design and the accessibility of the DPE
and PEN bits. Since the processor requires more than one OPB bus cycle to update the

Table 4: OPB Arbiter Registers

Register Name OPB Address Access

Control Register C_BASEADDR + 0x100 Read/Write

LVL0 Priority Register C_BASEADDR + 0x104 Read/Write

LVL1 Priority Register C_BASEADDR + 0x108 Read/Write

LVL2 Priority Register C_BASEADDR + 0x10C Read/Write

LVL3 Priority Register C_BASEADDR + 0x110 Read/Write

LVL4 Priority Register C_BASEADDR + 0x114 Read/Write

LVL5 Priority Register C_BASEADDR + 0x118 Read/Write

LVL6 Priority Register C_BASEADDR + 0x11C Read/Write

LVL7 Priority Register C_BASEADDR + 0x120 Read/Write

LVL8 Priority Register C_BASEADDR + 0x124 Read/Write

LVL9 Priority Register C_BASEADDR + 0x128 Read/Write

LVl10 Priority Register C_BASEADDR + 0x12C Read/Write

LVL11 Priority Register C_BASEADDR + 0x130 Read/Write

LVL12 Priority Register C_BASEADDR + 0x134 Read/Write

LVL13 Priority Register C_BASEADDR + 0x138 Read/Write

LVL14 Priority Register C_BASEADDR + 0x13C Read/Write

LVL15 Priority Register C_BASEADDR + 0x140 Read/Write

Table 5: OPB Arbiter Control Register

DPE PEN PMN PID

↓ ↓ ↓ ↓
0 1 2 3 4 5 6 27 28 31

↑ ↑ ↑ ↑
DPERW PENRW PRV Reserved
March 2002 www.xilinx.com 71
1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

master’s priority levels, the bit Priority Registers Valid (PRV), has been added to indicate that
the Priority Registers are being modified and are not valid.

Table 6: OPB Arbiter Control Register Bit Definitions

Bit(s) Name Core Access Reset Value Description

0 DPE Read(1)

Read/Write(2)

’0’(1)

’1’(2)

Dynamic Priority Enable. Enables
dynamic priority arbitration algorithm and
update of the Priority Register.

• ’0’ - dynamic priority arbitration
disabled

• ’1’ - dynamic priority arbitration
enabled

1 DPERW Read ’0’(1)

’1’(2)

Dynamic Priority Enable Bit
Read/Write. This bit informs the software
as to the access of the DPE bit. If the OPB
Arbiter is parameterized to only support
fixed priority arbitration, the DPE bit is
always set to’0’ to reflect that dynamic
priority arbitration is not available.

• ’0’ - DPE bit is read only

• ’1’ - DPE bit is read/write

2 PEN Read/Write ’0’(3)

’1’(4)

Park Enable. Enables parking on a
master when no other masters have
requests asserted.

• ’0’ - parking disabled

• ’1’ - parking enabled

3 PENRW Read ’0’(3)

’1’(4)

Park Enable Bit Read/Write. This bit
informs the software as to the access of
the PEN bit. If the OPB Arbiter is
parameterized to not support bus parking,
the PEN bit is always set to’0’ to reflect
that bus parking is not available.

• ’0’ - PEN bit is read only

• ’1’ - PEN bit is read/write

4 PMN Read/Write ’0’ Park On Master Not Last. When parking
is enabled, this bit determines if the arbiter
parks on the master who was last granted
the bus or on the master specified by the
Parked Master ID bits.

• ’0’ - park on the master who had just
been granted the bus

• ’1’ - park on the master specified by
the Parked Master ID bits
72 www.xilinx.com March 2002
 1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

If the OPB Arbiter has been parameterized to only support fixed priority arbitration, the DPE bit
is set to ’0’ and is read-only by the processor core. The DPERW bit is then set to ’0’ and reflects
the fact that the OPB Arbiter only supports fixed priority arbitration. If the OPB Arbiter has been
parameterized to support dynamic priority arbitration, the DPE bit can be read from and written
to by the processor. The DPERW bit is set to ’1’ and reflects the fact that the priority mode of the
arbiter can be controlled by the DPE bit. Although the OPB Arbiter has been parameterized to
support dynamic priority arbitration, the OPB Arbiter can be put in a fixed priority arbitration
mode by negating the DPE bit. As a result, both priority modes are available and supported.

If the OPB Arbiter has been parameterized to not support bus parking, the PEN bit is set to ’0’.
The PENRW bit is then set to ’0’ and reflects the fact that the PEN bit is read-only by the
processor core. If the OPB Arbiter has been parameterized to support bus parking, the PEN bit
can be read from and written to by the processor. The PENRW bit is set to ’1’ and reflects the
fact that the bus parking mode of the arbiter can be controlled by the PEN, PMN, and PID bits
of the Control Register. Although the OPB Arbiter has been parameterized to support bus
parking, bus parking can be disabled by negating the PEN bit. Also, if the OPB Arbiter has been
parameterized to not include a processor or OPB slave interface, the Control Register is not
accessible. As a result, the parking mode will be set to park on the last master which is the
default value in the Control Register of the PMN bit. In order to park on the master whose ID is
contained in the Control Register, the OPB Arbiter must be parameterized to support a
processor interface so that the Control Register can be set up appropriately.

Since the processor will require multiple bus cycles to update the masters’ priority levels in the
Priority Registers, there will exist some period of time in which the Priority Registers will not
contain unique master IDs. Though the arbiter will still function properly in this circumstance, a
particular master will not have a priority level associated with it and therefore will never receive
a grant if it issues a request. This could cause the OPB to "hang". Therefore, whenever the
processor begins to modify the priority levels of the masters, it first negates the PRV bit in the
Control Register, indicating to the arbitration logic that the Priority Register values should not

5 PRV Read/Write ’1’ Priority Registers Valid. This bit
indicates that the Priority Registers all
contain unique master IDs. This bit is
negated by the processor before the
processor modifies the Priority Registers
and is asserted by the processor when the
modifications are complete. Whenever
this bit is negated, the OPB Arbiter uses
the masters’ IDs as their priority levels to
perform bus arbitration.

6:C_OPB_DWIDTH -
log2(C_NUM_MASTERS)
- 1

Reserved

C_OPB_DWIDTH -
log2(C_NUM_MASTERS):
C_OPB_DWIDTH - 1

PID Read/Write “0000”(5) Parked Master ID. These bits contain the
ID of the master to park on if parking is
enabled and the Park On Master Not Last
bit is set.

Notes:
1. OPB Arbiter parameterized to support fixed priority arbitration
2. OPB Arbiter parameterized to support dynamic priority arbitration
3. OPB Arbiter parameterized to not support bus parking
4. OPB Arbiter parameterized to support bus parking
5. The number of bits required by the PID field will vary with the number of masters supported by the OPB Arbiter. A field

width of 4 is shown here for the default value.

Table 6: OPB Arbiter Control Register Bit Definitions (Continued)

Bit(s) Name Core Access Reset Value Description
March 2002 www.xilinx.com 73
1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

be used in bus arbitration. In this case, the arbitration logic will use the masters’ IDs as their
priority level until the PRV bit has been asserted.

The OPB Arbiter Control Register can be accessed from the OPB bus only if the OPB Arbiter
is parameterized to support a processor interface (C_PROC_INTRFCE=1).

OPB Arbiter Priority Registers
Each Priority Register holds the master ID of the OPB master at that priority level as shown in
Table 8. Each master’s relative priority is determined by its ID’s location within these registers.
The LVL0 Priority Register holds the ID of the master with highest priority (level 0), the LVL1
Priority Register holds the ID of the master with the next highest priority (level 1), and so on.
The LVL[C_NUM_MASTERS-1] Priority Register holds the ID of the master with lowest priority.
These registers are reset to values which assign level 0 (highest) priority to Master 0, level 1
(next highest) priority to Master 1, level 2 priority to Master 2, etc.

The number of bits required by the master ID within each Priority Register will vary based on
the number of masters support by the OPB Arbiter. The master ID will always be aligned to the
LSB position within the register so that the master ID will appear as an integer when accessed
by software.

Notes:
1. The IBM OPB Arbiter refers to the priority levels as High, Medium High, Medium Low, and Low since

it only implemented arbitration among 4 masters. Since the Xilinx implementation of the OPB arbiter
supports parameterization of the number of OPB masters in the system, numbers are used to
represent priority levels instead of text descriptors. Level 0 will always remain the highest priority
level regardless of the number of masters implemented. The higher the level number, the lower the
priority.

Each master ID must be contained in one of the Priority Registers, otherwise that master’s
request will be ignored by the arbiter (since it has no priority value) and a grant to that master
will never be asserted. This could cause the bus to stall since there is no mechanism in the
OPB specification for a master to timeout while waiting for a grant. Therefore, each Priority
Register must contain a unique master ID and all master IDs must be contained in one of the
Priority Registers. Since the processor can not update the Priority Registers in a single OPB
transaction, there may be several clock cycles in which a particular master ID is not contained
within a Priority Register. Therefore, the Priority Registers Valid (PRV) bit in the Control
Register is used to indicate that the values of the Priority Registers are being modified and
should not be used in OPB arbitration. The processor negates this bit before modifying the

Table 7: OPB Arbiter OPB Arbiter LVLn Priority Register

Reserved LnPM

↓ ↓
0 27 28 31

Table 8: OPB Arbiter LVLn Priority Register Bit Definitions

Bit(s) Name Core Access Reset Value Description
0 : C_OPB_DWIDTH -
log2(C_NUM_MASTERS) -1

Reserved

C_OPB_DWIDTH -
log2(C_NUM_MASTERS) :
C_OPB_DWIDTH-1

LnPM Read/Write mmmm(1) Level n Priority Master ID. This field
contains the ID of the master at level

n priority. (2)

Notes:
1. "mmmm" represents the bit encoding of the Master ID at this priority level
1. n = 0 - C_NUM_MASTERS - 1
74 www.xilinx.com March 2002
 1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

Priority Registers and then asserts this bit when the modification is complete. The processor
will insure that whenever the PRV bit is asserted, all master IDs have been assigned a priority.
When the PRV bit is negated, the OPB arbiter will assign priority based on the master ID, i.e,
Master 0 will have level 0 priority (highest), Master 1 will have level 1 priority, and Master n will
have level n priority. Once the PRV bit has been asserted, the values in the Priority Registers
will again be used to determine OPB ownership.

The Priority Register can be accessed from the OPB for read and write operations. Note that
regardless of the priority mode selected for the OPB Arbiter (even if the OPB Arbiter has been
parameterized to fixed priority arbitration), the processor core can set the desired priority levels
of the OPB masters by writing to these registers.

OPB Arbiter
Block Diagram

The top-level block diagram for the OPB Arbiter is shown in Figure 7. The IPIF block is the OPB
bus interface block that handles the OPB bus protocol for reading and writing the Priority
Registers and the Control Register within the OPB Arbiter. The ARB2BUS data mux contains
the data multiplexor required to output data to the OPB bus during a read cycle. The Arbitration
Logic block determines which incoming request has the highest priority and the Park /Lock
Logic block determines which master should be granted the bus based on this priority as well
as whether the bus is locked or if bus parking is enabled. The Watchdog Timer asserts the OPB
timeout signal if a slave response (OPB_xferAck, OPB_retry, or OPB_toutSup) has not been
received within 16 clock cycles of the master taking control of the bus.

Figure 7: OPB Arbiter Top-level Block Diagram

OPB Slave
Priority Register Logic

Control Register Logic

IP2BUS Data Mux

Watchdog Timer

Arbitration Logic

Park/Lock Logic
OPB Grant Signals

OPB Bus Lock

O
P

B
 B

us
 S

ig
na

ls

OPB Requests

O
P

B
 B

us
 S

ig
na

ls

Interface
(IPIF)
March 2002 www.xilinx.com 75
1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

When C_NUM_MASTERS=1, the only logic in the OPB Arbiter is the Watchdog Timer. The
OPB Grant signal is set to VCC and all OPB Bus output signals are set to GND.

The following sections describe each module in the block diagram.

OPB Slave Interface (IPIF)
The IPIF block implements a slave interface to the OPB and is only present in the design if
C_PROC_INTRFCE=1 and C_NUM_MASTERS>1. Its address in the OPB memory map is
determined by setting the parameter C_BASEADDR. All registers are addressed by an offset to
C_BASEADDR as shown in Table 4.

The IPIF block outputs a register write clock enable and a register read clock enable for the
register which was addressed depending on the type of data transfer specified by the master.
When the data transfer is complete, the IPIF block generates the transfer acknowledge.

Control Register Logic
The Control Register Logic block simply contains the OPB Arbiter Control Register described in
section OPB Arbiter Control Register and is only present in the design if C_NUM_MASTERS
> 1.

Priority Register Logic
The Priority Register logic contains the Priority Registers and the logic to update the priority of
the OPB masters. Descriptions of the OPB Arbiter Priority Registers are found in section OPB
Arbiter Register Descriptions. The Priority Registers are only present in the design if
C_NUM_MASTERS>1.

Priority Register Update Logic

Fixed Priority Parameterization (C_DYNAM_PRIORITY=0)

When the OPB Arbiter is parameterized to support only fixed arbitration, the dynamic priority
enable bit in the Control Register is permanently disabled. The Priority Registers are loaded at
reset with the value of the Master ID which matches the priority level of the register. For
example, the LVL0 Priority Register is loaded with ’0’ to represent the ID of Master 0. Likewise,
the LVLn Priority Register is loaded with the bit encoding of n to represent the ID of Master n as
shown in Table 8.

The Priority Registers can be loaded with different Master IDs by writing to the Priority
Registers (if C_PROC_INTRFCE=1), therefore, the priorities of the OPB Masters can be
changed as desired by software. The Priority Registers Valid (PRV) bit in the Control Register
is negated whenever the processor modifies the Priority Registers and is asserted whenever
the modification is complete. The ID of the masters are used to determine OPB ownership
whenever the PRV bit is negated. The relative priorities of the OPB Masters are then
determined by the connection of master devices to the request/grant signals. The values of the
Priority Registers are used in OPB arbitration whenever the PRV bit is asserted.
76 www.xilinx.com March 2002
 1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

Fixed priority arbitration for a 4 OPB Master system with combinational grant outputs is shown
in Figure 8. Figure 9 shows the same system when configured with registered grant outputs
with the master requests separated by an additional clock.

Dynamic Priority Parameterization (C_DYNAM_PRIORITY=1)

When the OPB Arbiter is parameterized to support dynamic priority arbitration, dynamic priority
arbitration mode is enabled at reset or at any other time by writing a “1” to the DPE bit of the
Control Register. Disabling dynamic priority arbitration mode by setting the DPE bit to “0” puts
the OPB Arbiter into a fixed priority arbitration mode. This effectively freezes the values of the
Priority registers (unless updated by an OPB write to the registers) and thus its ordering of
arbitration priorities among the attached master devices. Setting the master priorities by
software and not allowing them to update results in a static assignment of priority among the
OPB masters.

Upon reset, the Priority registers contains the reset values as described in Table 8 and the
dynamic priority bit is enabled. When dynamic priority arbitration mode is enabled, the contents
of the Priority Registers are reordered after every request-grant cycle, moving the ID of the
most recently granted master to the lowest Priority register and moving all other master IDs up
one level of priority. The dynamic priority arbitration mode operation results in an
implementation of the least recently used (LRU) algorithm. The lowest priority master ID will be

Figure 8: Fixed Priority Arbitration, Combination Grant Outputs for 4 OPB Masters

Figure 9: Fixed Priority Arbitration, Registered Grant Outputs for 4 OPB Masters

Cycles

OPBClk

LVL0_Priority_Reg[31:32]

LVL1_Priority_Reg[31:32]

LVL2_Priority_Reg[31:32]

LVL3_Priority_Reg[31:32]

M_request[0]

M_request[1]

M_request[2]

M_request[3]

OPB_MGrant[0]

OPB_MGrant[1]

OPB_MGrant[2]

OPB_MGrant[3]

00

01

10

11

0 1 2 3 4 5 6 7 8 109

Cycles

OPBClk

LVL0_Priority_Reg[31:32]

LVL1_Priority_Reg[31:32]

LVL2_Priority_Reg[31:32]

LVL3_Priority_Reg[31:32]

M_request[0]

M_request[1]

M_request[2]

M_request[3]

OPB_MGrant[0]

OPB_MGrant[1]

OPB_MGrant[2]

OPB_MGrant[3]

00 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18

00

01

10

11
March 2002 www.xilinx.com 77
1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

the one which was granted the bus most recently, and the highest priority master ID will be the
one which was granted the bus the least in the recent past.

The values to be loaded into the Priority registers are either the values written to the register
from the OPB or a shift of the master ID from the next lowest Priority register. In the case of the
low Priority register, the ID of the master last granted the bus is loaded into this register. The
master ID of the master granted the bus is loaded into the lowest Priority register and the IDs
in all other Priority registers up to the priority of the one just granted move up one position in
priority. The Priority registers above the one just granted hold their master ID values.

A pipeline register exists between the arbitration logic and Priority Register update logic which
delays the master grant signals by an additional clock. Therefore, if the OPB Arbiter is
configured for dynamic priority arbitration and registered grant outputs, the master grant
signals will be output 2 clocks after a valid arbitration cycle. Dynamic priority arbitration for a 4
OPB master system with combinational grant outputs is shown in Figure 10. Figure 11 shows
dynamic priority arbitration for a 4 master OPB system with registered grant outputs.

Block Diagram

The block diagram for the Priority registers and the register update logic is shown in Figure 12.
The gray shaded blocks represent the Priority Register update logic which is only present when
the OPB Arbiter is parameterized to support Dynamic Priority arbitration.

Figure 10: Dynamic Priority Arbitration, Combinational Grant Outputs- 4 OPB Masters

Figure 11: Dynamic Priority Arbitration, Registered Grant Outputs- 4 OPB Masters

Cycles

OPBClk

LVL0_Priority_Reg[31:32]

LVL1_Priority_Reg[31:32]

LVL2_Priority_Reg[31:32]

LVL3_Priority_Reg[31:32]

M_request[0]

M_request[1]

M_request[2]

M_request[3]

OPB_MGrant[0]

OPB_MGrant[1]

OPB_MGrant[1]

OPB_MGrant[3]

00 1 2 3 4 5 7 8 9 10 11 12

0000 01 10 11 00 01

0101 10 11 00 01 10

1010 11 00 01 10 11

1111 00 01 10 11 00

Cycles

OPBClk

LVL0_Priority_Reg[31:32]

LVL1_Priority_Reg[31:32]

LVL2_Priority_Reg[31:32]

LVL3_Priority_Reg[31:32]

M_request[0]

M_request[1]

M_request[2]

M_request[3]

OPB_MGrant[0]

OPB_MGrant[1]

OPB_MGrant[1]

OPB_MGrant[3]

00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0000 01 10 11 00 01

0101 10 11 00 01 10

1010 11 00 01 10 11

1111 00 01 10 11 00
78 www.xilinx.com March 2002
 1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

Figure 12: Priority Register Logic

shift_lvlm

shift_lvl1

shift_lvl0

shift_lvln

LVL0

LVL1

LVLm

LVLn

shift_lvl0

shift_lvl1

shift_lvlm

shift_lvln

opb_wrregce
opb_data(0:31)

lvl0_priority_reg

lvl1_priority_reg

dpen

lvln_master_id

opb_m(0:3)grant

lvlm_priority_reg

lvln_priority_reg

Priority Reg

Priority Reg

Priority Reg

Priority Reg

m = C_NUM_MASTERS-2
n = C_NUM_MASTERS-1
March 2002 www.xilinx.com 79
1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

When the OPB Arbiter has been parameterized to support a processor interface
(C_PROC_INTRFCE=1), the Priority registers can still be loaded by the processor, allowing the
processor to change the priorities of the OPB Masters. Also, the arbiter can be set to operate
in a fixed priority mode by the processor writing to the Control Register and negating the DPE
bit. However, the pipeline registers between the arbitration logic and the register update logic
are still present, thereby delaying the grant outputs by an additional clock cycle.

ARB2BUS Data Mux
When a read of the OPB Arbiter Priority Registers or the OPB Arbiter Control Register is
requested on the OPB, the ARB2BUS Data Mux outputs the requested data to the IPIF which
sends this data to the OPB with the required protocol. This logic is only present in the design if
C_PROC_INTRFCE=1 and C_NUM_MASTERS>1.

Arbitration Logic
Figure 13 depicts the functional block diagram of arbitration logic for the OPB arbiter. This logic
is only present in the design if C_NUM_MASTERS>1. The pipeline registers are only present
in the arbitration logic if C_DYNAM_PRIORITY = 1.

All master request signals are input to the Prioritize Request block which consists of
multiplexors which prioritize the master’s requests into the signals lvl0_req, lvl1_req, lvlm_req,
and lvln_req based on the requesting masters’ priorities if PRV =1 or the master IDs if PRV =
0. (n = C_NUM_MASTERS-1, m= C_NUM_MASTERS-2)

The prioritized request signals are then input into the priority encoder which determines which
priority grant is asserted, i.e., grant_lvl0, grant_lvl1, grant_lvlm, and grant_lvln.

The prioritized grant signals are then input to the Assign Grants block to determine which
master’s grant signal is asserted based on the priority of that master, again determined by
examination of the master IDs in the Priority Registers if PRV = 1, or the master IDs if PRV = 0.
The master’s priority code selects the appropriate prioritized grant signal to be output to that
master. These intermediate grant signals are then registered if the OPB Arbiter is configured to
support dynamic priority arbitration to reduce the number of logic levels between the arbitration
logic and the Priority Register update logic. Since the Priority Register update logic is not
present when the OPB Arbiter is not configured to support dynamic priority arbitration, these
pipeline registers are not necessary and therefore are not present in the design.

The arbitration logic also contains the logic for detecting valid arbitration cycles which is input
to the Park/Lock logic. Valid arbitration cycles are defined as when either the OPB_select
signal is deasserted indicating no data transfer is in progress or when OPB_XferAck is
asserted, indicating the final cycle in a data transfer and OPB_busLock is not asserted.
80 www.xilinx.com March 2002
 1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

Figure 13: Arbitration Logic

Lvl0 Select Lvl1 Select LvlmSelect Lvln Select

GrantM0 GrantM1 GrantMm GrantMn

Lvl0 Master ID Lvl1 Master ID Lvlm Master ID Lvln Master ID

M0 Priority M1 Priority Mm Priority Mn Priority

lv
l0

_r
eq

lv
l1

_r
eq

lv
lm

_r
eq

lv
ln

_r
eq

gr
an

t_
lv

l0

gr
an

t_
lv

l1

gr
an

t_
lv

lm

gr
an

t_
lv

ln

Prioritize Requests

Priority Encoder

Assign Grants

gr
an

t[0
:n

]
M

_r
eq

ue
st

[0
:n

]

gr
an

t0

gr
an

t1

gr
an

tm

gr
an

tn

lvl[0:n]_priority_reg

Select Select Select Select

n = C_NUM_MASTERS-1
m = C_NUM_MASTERS-2

PRV

Pipeline Register
= only present when
configured for dynamic
priority arbitration
March 2002 www.xilinx.com 81
1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

Park/Lock Logic
The Park/Lock logic processes the raw or registered grant outputs from the Arbitration Logic
and is only present in the design if C_NUM_MASTERS>1. It provides for the parking (if
C_PARK=1) and locking functionality of the OPB Arbiter and generates the final grant signals
which are sent to the OPB master devices during valid arbitration cycles as shown in Figure 14.
The OPB Arbiter can be parameterized to register the master grant signals by setting the
parameter C_REG_GRANTS to 1.

Grant Last Register

The Grant Last Register holds the state of the grant outputs from the last request/grant
arbitration cycle. This information is used to determine which master currently has control of the
bus to implement bus locking and park on last master parking.

Lock Logic

If an OPB master asserts the bus lock signal upon assuming control of the bus, the OPB arbiter
will continue to grant the OPB to the master which locked the bus. Bus lock signals from all
attached masters are ORed together to form OPB_busLock, which is an input to the OPB
Arbiter. When OPB_busLock is asserted, bus arbitration is locked to the last granted master (as
indicated by the Grant Last register). All other master Grant outputs are gated off and will not be
asserted, regardless of the state of the Request inputs or the programmed priorities.

When the OPB bus is locked, bus request and grant signals have no effect on bus arbitration.
The OPB master may proceed with data transfer cycles while asserting bus lock without
engaging in bus arbitration and without regard to the state of the request and grant signals.
Grant signals will be generated if the master asserts its request signal. The locked master’s

Figure 14: Park/Lock Logic

Grant Last
Register

Lock Logic

Park Logic

Grant Logic

OPB_MGrant[0:n]

locked[0:n]

parked[0:n]

M_request[0:n]

park_enable

park_master_notlast

park_master_id

grant[0:n]

OPB_buslock

arb_cycle

n = C_NUM_MASTERS-1
82 www.xilinx.com March 2002
 1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

grant signal will be asserted in response to its request signal during valid arbitration cycles.
However, the locked master need not assert its request or receive an asserted grant signal to
control the bus. The master owns the bus by virtue of asserting its bus lock signal after being
granted the bus and before another valid arbitration cycle.The master which asserted bus lock
will retain control of the bus until bus lock is deasserted for at least one complete cycle. The
OPB arbiter will detect the bus lock signal and will continue to grant the bus to the current
master, regardless of other (higher priority) requests. Figure 15 shows the OPB bus lock
operation when the OPB Arbiter is configured for fixed priority arbitration and combinational
grant outputs. Figure 16 shows the OPB bus lock operation when the OPB Arbiter is configured
for fixed priority arbitration and registered grant outputs. Note that the bus grant signal is
asserted one clock later.

Park Logic

When C_PARK=1, the OPB Arbiter supports bus parking. Bus parking is when a master’s grant
signal is asserted during valid arbitration cycles when no other master devices are requesting.
This reduces latency for the parked master eliminating the need for a request/grant cycle when
initiating a new OPB transfer.

Asserting a grant signal for parking is considered an arbitration, since it determines which
device controls the bus. If dynamic priority mode is enabled, the ID of the parked master will be
shifted to the lowest priority slot of the Priority Register. The master will remain parked (its grant
signal asserted) so long as no other master asserts a request signal. If the parked master and
another master assert request at the same time, the parked master will control the bus because
the bus was parked on this master even though this master is at a lowest priority. Figure 17
illustrates this behavior when the OPB Arbiter is configured to support fixed priority arbitration
and combinational grant outputs. Figure 18 illustrates this behavior when the OPB Arbiter is
configured to support dynamic priority arbitration when the OPB Arbiter is configured to support
dynamic priority arbitration and registered grant outputs.

Figure 15: Bus Locking - Fixed Priority, Combinational Grant Outputs

Figure 16: Bus Locking - Fixed Priority, Registered Grant Outputs

Cycles

OPBClk

M_request[1]

OPB_MGrant[1]

M1_busLock

M1_select

OPB_xferAck

0 1 2 3 4 5 6

Cycles

OPBClk

M_request[1]

OPB_MGrant[1]

M1_busLock

M1_select

OPB_xferAck

0 1 2 3 4 5 6 7
March 2002 www.xilinx.com 83
1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

When the grant outputs are registered, the parked master’s grant will assert once, negate, and
then stay asserted. This allows the internal arbitration state machine a clock cycle to check if
OPB_select is asserted before parking. This case occurs when a request from a master is
aborted, but the grant is in the internal pipeline.

When C_PARK = 1, bus parking is enabled or disabled by the value of the Park Enable control
bit in the OPB Arbiter Control Register (see Table 6). The bus can either be parked on the
master who was last granted the bus, or on a specified master as indicated by the Park Master
ID bits in the OPB Arbiter Control Register. If bus parking is not desired, the park logic can be
eliminated by setting C_PARK=0.

Park on Master Not Last

When bus parking is enabled (bit PEN = 1 in the OPB Arbiter Control Register and C_PARK=1)
and Park on Master Not Last is selected (bit PMNL = 1 in the OPB Arbiter Control Register), the
bus will be parked on the master whose ID is contained in the Park Master ID (PMID) field of the
OPB Arbiter Control Register. This master’s grant signal will be asserted during valid arbitration
cycles when no other master’s request signal is asserted. Figure 19 shows bus parking on the

Figure 17: Bus Parking - Fixed Priority Arbitration, Combinational Grant Outputs

Figure 18: Bus Parking - Dynamic Priority Arbitration, Registered Grant Outputs

Cycles

OPBClk

Control_register[0:31]

LVL0_Priority_Reg[31:32]

LVL1_Priority_Reg[31:32]

LVL2_Priority_Reg[31:32]

LVL3_Priority_Reg[31:32]

M_request[0]

M_request[1]

M_request[2]

M_request[3]

OPB_MGrant[0]

OPB_MGrant[1]

OPB_MGrant[2]

OPB_MGrant[3]

00110000000000000000000000000000

00

01

10

11

0 1 2 3 4 5 6 7

Cycles

OPBClk

Control_register[0:31]

LVL0_Priority_Reg[31:32]

LVL1_Priority_Reg[31:32]

LVL2_Priority_Reg[31:32]

LVL3_Priority_Reg[31:32]

M_request[0]

M_request[1]

M_request[2]

M_request[3]

OPB_MGrant[0]

OPB_MGrant[1]

OPB_MGrant[2]

OPB_MGrant[3]

13 14 15 16

11111100000000000000000000000011

00 01 10 11 00

01 10 11 00 01

10 11 00 01 10

11 00 01 10 11

0 1 2 3 4 5 6 7 8 9 10 11 12
84 www.xilinx.com March 2002
 1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

master specified in the Control Register for a 4 OPB master system when the OPB Arbiter is
parameterized for fixed priority arbitration and combinational grant outputs.

Park on Last Master

When bus parking is enabled (bit PEN = 1 in the OPB Arbiter Control Register and C_PARK=1)
and Park on Master Not Last is negated (bit PMNL = 0 in the OPB Arbiter Control Register), the
bus will be parked on the master which was most recently granted the bus as indicated by the
Grant Last register. This master’s grant signal will be asserted during valid arbitration cycles
when no other master’s request signal is asserted. Figure 20 shows bus parking on the last
master with the OPB Arbiter parameterized for fixed priority arbitration and combinational grant
outputs for a 4 OPB Master system.

Figure 19: Bus Parking on Master Not Last - Fixed Priority Arbitration, Combinational
Grant Outputs

Figure 20: Bus Parking on Last Master - Fixed Priority Arbitration, Combinational Grant
Outputs

Cycles

OPBClk

Control_register[0:31]

LVL0_Priority_Reg[31:32]

LVL1_Priority_Reg[31:32]

LVL2_Priority_Reg[31:32]

LVL3_Priority_Reg[31:32]

M_request[0]

M_request[1]

M_request[2]

M_request[3]

OPB_MGrant[0]

OPB_MGrant[1]

OPB_MGrant[2]

OPB_MGrant[3]

00110000000000000000000000000000

00

01

10

11

0 1 2 3 4 5 6 7 8 9 10

Cycles

OPBClk

Control_register[0:31]

LVL0_Priority_Reg[31:32]

LVL1_Priority_Reg[31:32]

LVL2_Priority_Reg[31:32]

LVL3_Priority_Reg[31:32]

M_request[0]

M_request[1]

M_request[2]

M_request[3]

OPB_MGrant[0]

OPB_MGrant[1]

OPB_MGrant[2]

OPB_MGrant[3]

00 1 2 3 4 5 7 8 9 10 11

00100000000000000000000000000000

00

01

10

11
March 2002 www.xilinx.com 85
1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

Grant Logic

The Grant Logic block determines the final grant signals to the OPB Masters based on the
intermediate grant signals from the arbitration logic and the results of the park and lock logic.
The OPB Arbiter can be parameterized so that the grant signals are either registered outputs
are combinational outputs. Registering the grant signals allows for higher OPB clock
frequencies at the cost of a 1-cycle arbitration latency. Combinational grant outputs allow the
grant signals to be asserted within the same clock cycle as the Master request signals,
however, the overall clock frequency of the OPB will be affected. Basic OPB arbitration using
registered grant outputs is shown in Figure 2.

Watchdog Timer
The watchdog timer generates the OPB_timeout signal within the 16th cycle following the
assertion of OPB_select if there is no response from a slave (OPB_xferAck or OPB_retry) and
if toutSup is not asserted by an addressed slave device to suppress the timeout. This logic is
always present in the OPB Arbiter design.

Upon assertion of OPB_timeout, the master device which initiated the transfer cycle must
terminate the transfer by deasserting Mn_select in the cycle following the assertion of
OPB_timeout as shown in Figure 21. If OPB_busLock is not asserted, the OPB Arbiter will
perform a bus arbitration in the cycle in which OPB_select is deasserted. If OPB_busLock is
asserted, the requesting master retains control of the OPB, but must still deassert Mn_select
following the assertion of OPB_timeout for at least one cycle.

If OPB_xferAck or OPB_retry are asserted in the 16th cycle following the assertion of
Mn_select coincident to the assertion of OPB_timeout, the master device should ignore
OPB_timeout, and respond to the slave’s OPB_xferAck or OPB_retry signal.

Figure 21: OPB Timeout Error

Cycles

OPBClk

M_request[1]

M_request[2]

OPB_MGrant[1]

OPB_MGrant[2]

OPB_select

OPB_xferAck

OPB_retry

OPB_toutSup

OPB_timeout

0 1 15 16 17 18 19
86 www.xilinx.com March 2002
 1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

To prevent a bus timeout, an OPB slave must assert OPB_toutSup (OR of all slave’s
Sln_ToutSup) within 16 cycles from the assertion of OPB_select. OPB_toutSup will be used by
the OPB Arbiter to suppress the assertion of OPB_timeout and to suspend the timeout counter.
When OPB_toutSup is asserted, the timeout counter holds its current value. When
OPB_toutSup is negated , the timeout counter resumes counting. OPB timeout error
suppression is shown in Figure 22.

Design
Implementation

Device Utilization and Performance Benchmarks
Since the OPB Arbiter is a module that will be used with other design pieces in the FPGA, the
utilization and timing numbers reported in this section are just estimates. As the OPB Arbiter is
combined with other pieces of the FPGA design, the utilization of FPGA resources and timing
of the OPB Arbiter design will vary from the results reported here.

In order to analyze the OPB Arbiter’s timing within the FPGA, a design was created that
instantiated the OPB Arbiter with registers on all of the OPB Arbiter inputs and outputs. This
allowed a constraint to be placed on the clock net for the OPB Arbiter to yield more realistic
timing results. The fMAX parameter shown in Table 9 was calculated with registers on the OPB
Arbiter inputs and outputs. However, the resource utilizations reported in Table 9 do not include
the registers on the OPB Arbiter inputs and outputs.

The OPB Arbiter benchmarks are shown in Table 9 for a Virtex™-II -5 FPGA using multi-pass
place and route.

Figure 22: OPB Timeout Error Suppression

Cycles

OPBClk

M_request[1]

M_request[2]

OPB_MGrant[1]

OPB_MGrant[2]

OPB_select

OPB_xferAck

OPB_retry

OPB_toutSup

OPB_timeout

0 1 16 16+x 16+x+1 16+x+2

Table 9: OPB Arbiter FPGA Performance and Resource Utilization Benchmarks (Virtex™-II -5)
Parameter Values Device Resources fMAX

(MHz)
C_NUM_MASTERS C_DYNAM_PRIORITY C_PARK C_PROC_INTRFCE C_REG_GRANTS C_OPB_DWIDTH/

C_OPB_AWIDTH
Slices Slice

Flip-Flops
4-input
LUTs

fMAX

1 N/A N/A N/A N/A N/A 4 4 6 290

2 0 0 0 0 32/32 11 7 18 223

2 1 1 1 1 32/32 76 76 87 163

4 0 0 0 0 32/32 27 13 39 153

4 1 0 0 0 32/32 42 21 69 167

4 0 1 0 0 32/32 42 17 59 150

4 0 0 1 0 32/32 75 63 95 136

4 0 0 0 1 32/32 30 18 40 173

4 1 1 1 1 32/32 130 97 163 126

8 0 0 0 0 32/32 93 31 132 122
March 2002 www.xilinx.com 87
1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

Specification
Exceptions

Register Definitions and Addressing
To support parameterization of the number of masters, the Xilinx OPB Arbiter uses a separate
Priority Register for each priority level. Since the number of Priority Registers can vary, the
OPB Arbiter Control Register is placed at the base address of the OPB Arbiter so that its
location doesn’t vary.

Since the number of bits required for the master IDs will vary with the number of masters, the
fields in the Control Register and the Priority Registers that contain master IDs are LSB
aligned. The bit ordering of these registers is therefore different than that specified in the IBM
OPB Arbiter specification. The Control Register also contains additional bits (DPERW,
PENRW, PRV) not in the IBM OPB Arbiter specification. The DPERW bit indicates whether the
DPE bit can be modified, the PENRW bit indicates whether the PEN bit can be modified, and
the PRV bit indicates whether the Priority Registers contain valid data, i.e, all master IDs are
contained in a Priority Register.

I/O Signals
The signal ARB_DbusEn is no longer an I/O signal. The gating of the OPB Arbiter’s data bus
with the enable signal is done internally within the IPIF Module.

The master request signals and master grant signals have been combined into a bus with an
index that varies with the number of masters. This modification more easily supports the
parameterization of the number of masters supported by the Xilinx OPB Arbiter. Table 12
summarizes the I/O signal name modifications and variations.

8 1 1 1 1 32/32 278 145 398 100

16 0 0 0 0 32/32 441 84 654 100

16 1 1 1 1 32/32 904 252 1477 82

Notes:
1. These benchmark designs contain only the OPB Arbiter with registered inputs/outputs without any additional logic.

Benchmark numbers approach the performance ceiling rather than representing performance under typical user
conditions.

2. Different OPB data widths and OPB address widths are verified as part of the IPIF verification.
3. Device resource numbers do not include the registers for the OPB Arbiter I/O.
4. Max frequency calculated with registers on the OPB Arbiter I/O.

Table 9: OPB Arbiter FPGA Performance and Resource Utilization Benchmarks (Virtex™-II -5) (Continued)

Table 12: Xilinx OPB Arbiter I/O Signal Variations

IBM OPB Arbiter Signal Name Xilinx OPB Arbiter Signal Name

ARB_DBusEn no longer an I/O signal

ARB_XferAck Sl_XferAck

M0_request, M1_request,
M2_request, M3_request

M_request[0:C_NUM_MASTERS-1]

OPB_M0Grant, OPB_M1Grant,
OPB_M2Grant, OPB_M3Grant

OPB_MGrant[0:C_NUM_MASTERS-1]
88 www.xilinx.com March 2002
 1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

Priority Level Nomenclature
The IBM OPB Arbiter refers to the priority levels as High, Medium High, Medium Low, and Low
since it only implemented arbitration among 4 OPB masters. Since the Xilinx implementation of
the OPB arbiter supports parameterization of the number of OPB masters in the system, it was
decided that numbers should be used to represent priority levels instead of text descriptors.
Level 0 will always remain the highest priority level regardless of the number of masters
implemented. The higher the level number, the lower the priority.

Grant Outputs
The IBM OPB Arbiter only outputs combinational bus grant signals for both fixed and dynamic
priority arbitration. The Xilinx OPB Arbiter can be configured to output combinational or
registered bus grants. Also, when the Xilinx OPB Arbiter is configured to support dynamic
priority arbitration, the bus grants will be output one clock after the arbitration cycle due to a
pipeline register between the arbitration logic and the Priority Register update logic.

Bus Parking
When utilizing dynamic priority arbitration and the bus is parked on a particular bus master, this
bus master is moved to lowest bus priority. In the IBM OPB Arbiter, if another master requests
the bus at the same time as the parked bus master, the higher priority master will gain control
of the bus. In the Xilinx OPB Arbiter, the parked bus master will gain control of the bus, even
though this master is at a lower priority.

Clock and Power Management
The IBM OPB Arbiter Core supports clock and power management by gating clocks to all
internal registers and providing a sleep request signal to a central clock and power
management unit in the system. This sleep request signal is asserted by the IBM OPB Arbiter
to indicate when it is permissible to shut off clocks to the arbiter. These functions are not
supported in the Xilinx implementation of the OPB Arbiter, therefore the following I/O signal is
not used:

• ARB_sleepReq -the FPGA implementation of the OPB bus will not support sleep modes

Scan Test Chains
The IBM OPB Arbiter contains an internal scan chain for testing and verification purposes.
Xilinx FPGAs support boundary scan testing but the internal flip-flops within the architecture do
not provide for an internal scan chain. Therefore, the internal scan chain implemented in the
IBM OPB Arbiter is not supported in the Xilinx implementation and the following I/O signals are
not used:

• LSSD_AClk - FPGA implementation does not support scan

• LSSD_BClk - FPGA implementation does not support scan

• LSSD_CClk - FPGA implementation does not support scan

• LSSD_scanGate - FPGA implementation does not support scan

• LSSD_scanIn - FPGA implementation does not support scan

• LSSD_scanOut - FPGA implementation does not support scan

Reference
Documents

The following documents contain reference information important to understanding the OPB
Arbiter design:

• IBM 64-Bit On-Chip Peripheral Bus Architectural Specification (v2.0)

• IBM On-Chip Peripheral Bus Arbiter Core User’s Manual (v1.5), 32-Bit Implementation
March 2002 www.xilinx.com 89
1-800-255-7778

On-Chip Peripheral Bus (OPB) Arbiter Design Specification
R

90 www.xilinx.com March 2002
 1-800-255-7778

Summary This document describes the specifications for a Simple Interrupt Controller for use in Xilinx
FPGAs. This document applies to the following peripherals:

Overview A Simple Interrupt Controller is composed of a bus-centric wrapper that contains the IntC core
and a bus interface. The IntC core is a simple, parameterized interrupt controller that, along
with the appropriate bus interface, attaches to either the OPB (On-chip Peripheral Bus) or the
DCR (Device Control Register) Bus. It can be used in embedded PowerPC systems (Virtex-II
PRO devices), and in MicroBlaze soft processor systems. There are currently two versions of
the Simple Interrupt Controller:

• OPB IntC (OPB interface)

• DCR IntC (DCR interface)

In this document IntC and Simple IntC are used interchangeably to refer to functionality or
interface signals that are common to all variations of the Simple Interrupt Controller. However,
when its necessary to make a distinction, the interrupt controller is referred to as OPB IntC or
DCR IntC.

Features
A Simple Interrupt Controller has the following features:

• Modular design provides a core interrupt controller functionality that is instantiated within a
bus interface design (currently the OPB and DCR buses are supported)

• OPB V2.0 bus interface with byte-enable support (IBM SA-14-2528-01 64-bit On-chip
Peripheral Bus Architecture Specifications, Version 2.0)

• Supports data bus widths of 8-bits, 16-bits, or 32-bits for OPB interface

• Number of interrupt inputs is configurable up to the width of the data bus

• Easily cascaded to provide additional interrupt inputs

• Interrupt Enable Register for selectively disabling individual interrupt inputs

• Master Enable Register for disabling the interrupt request output

• Each input is configurable for edge or level sensitivity — edge sensitivity can be
configured for rising or falling; level sensitivity can be active-high or -low

• Automatic edge synchronization when inputs are configured for edge sensitivity

• Output interrupt request pin is configurable for edge or level generation — edge
generation configurable for rising or falling; level generation configurable for active-high or
-low

Interrupt Controller Overview
Interrupt controllers are used to expand the number of interrupt inputs a computer system has
available to the CPU and, optionally, provide a priority encoding scheme. Modern CPUs
provide one or more interrupt request input pins that allow external devices to request service

Xilinx Embedded Processors: OPB Peripherals

March 2002

OPB Simple Interrupt Controller
Specification

R

opb_intc v1.00b
March 2002 www.xilinx.com 91
MicroBlaze Hardware Reference Guide 1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

OPB Simple Interrupt Controller Specification
R

by the CPU. There are two main interrupt request mechanisms used by CPUs. Auto vectoring
interrupt schemes provide an interrupt request signal to the processor and during the interrupt
acknowledge cycle, the interrupt controller provides all or some portion of the address of the
interrupt service routine. Hard vector interrupt schemes provide one or more fixed locations in
memory, one for each interrupt request input, or one location for all interrupt inputs. In either
case, some interrupt controllers allow you to program the polarity of the interrupt inputs and
whether they are level or edge sensitive. Some may allow the priority of an interrupt to be
programmed as well. Some popular embedded processors and their associated interrupt
controllers / mechanisms are described in the following paragraphs.

Intel 8051

As in many single chip solutions, the interrupt controller for the 8051 is embedded into the
functionality of the CPU and on-chip peripherals. The 8051 micro controller utilizes a hard
vector approach for handling interrupts. There is a unique, hard vector address associated with
external interrupt 0, timer 0, external interrupt 1, timer 1 and the serial port. You can program
interrupts for high or low priority. There is an interrupt enable bit for each interrupt source as
well as a bit for enabling or disabling all interrupts. You can program the two external interrupt
inputs to be either edge sensitive (falling edge) or level sensitive (active low).

Zilog Z80

The Z80 supports both hard vector and auto vector modes for interrupts. The Non-Maskable
Interrupt (NMI) input utilizes a hard vector and cannot be disabled by software. This interrupt is
an active low, level sensitive interrupt. The other interrupt input (INT), which is also an active
low, level sensitive interrupt, supports three different modes. Mode 0 provides compatibility
with the 8080 microprocessor. During an interrupt acknowledge cycle the interrupting device
jams a restart instruction onto the data bus, which causes program execution to continue at one
of eight hard coded locations. Mode 1 is a hard vector interrupt with a single hard vector, similar
to the NMI but at a different location. Mode 2 is a fully auto vectored interrupt mode. In this
mode the interrupt controller is actually distributed between the processor and the Z80 family
peripherals. During an interrupt acknowledge cycle the interrupting device places the low eight
bits of the interrupt service routine address on the data bus. The processor provides the upper
eight bits from a dedicated register that is loaded by software. NMI always has a higher priority
than INT. Multiple devices can be attached to either interrupt input using a wired-or
configuration. Additionally, in Mode 2, devices on the INT input can be daisy-chained to provide
additional interrupt priorities. The INT input can be masked by software.

Motorola 68332

The 68332 has seven active low, level sensitive interrupt request inputs (IRQ1 to IRQ7). These
inputs correspond to the seven interrupt request levels of the CPU32 core. Devices (internal or
external) request service by activating a particular interrupt level. If that level is not masked
then the processor acquires the appropriate interrupt vector number and obtains the service
routine address from a 256 location interrupt vector table, indexed by the interrupt vector
number. The interrupt vector number is determined on a per device basis, and is either at a
fixed location relative to the interrupt request level or is supplied by the interrupting device as
part of the interrupt acknowledge cycle. Interrupt request level seven is non-maskable and the
other six levels can be masked by software. Interrupt request level one has the lowest priority
and interrupt request level seven has the highest priority. All the peripherals on-chip can be
programmed to request an interrupt on any of the seven levels. Interrupt request levels one
through six behave as level sensitive interrupts in that as long as that level is active interrupt
requests will be generated. The level must be maintained by the interrupting device until the
interrupt has been acknowledged by the processor. Interrupt request level seven behaves like
an edge sensitive interrupt since only one interrupt request is generated each time that level is
entered and the level must be exited and re-entered to generate another interrupt.

MIPS

MIPS CPUs have eight interrupt sources, six of which are for hardware interrupts and the
remaining two are for software interrupts. There is no priority, all interrupts are considered
92 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Simple Interrupt Controller Specification
R

equal. Each interrupt can be masked by the software and there is a global interrupt enable.
MIPS only supports a hard vector mechanism but the vector address can be programmed to be
in a non-cachable or cachable memory segment. An external interrupt controller could provide
additional interrupt inputs and a priority encoding scheme but there is no mechanism for
providing auto vectoring. As a result, the job of prioritizing interrupts and branching to the
proper interrupt service routine is done by the software.

ARM

The ARM architecture provides two external interrupt inputs: FIQ and IRQ. FIQ is higher priority
than IRQ but both can be masked by software. Each interrupt has a hard vector associated with
it and its own status register and subset of general purpose registers. An external interrupt
controller could provide additional interrupt inputs with priority but there is no auto vectoring
capability.

IBM PowerPC 405GP Universal Interrupt Controller (UIC)

The UIC for the PowerPC 405GP provides 19 internal and 7 external interrupts. Eighteen of the
internal interrupts are active high, level sensitive. The other internal interrupt is edge sensitive
and active on the rising edge. The seven external interrupts are programmable as to polarity
and sensitivity. Each interrupt source can be programmed to source the critical or non-critical
input to the 405 core. All interrupts can be masked and the current interrupt state can be read
by the processor. The UIC supports prioritized auto vectoring for the critical interrupts, either
through a vector table or the actual address of the service routine. The UIC does not support
vector generation for the non-critical interrupts, relying instead on the interrupt vector
generation mechanism within the 405 core. This mechanism is similar to a hard vector, except
that the vector used is programmable by the software.

Simple IntC

The interrupt controller described in this document is intended for use in a hard vector interrupt
system. It does not directly provide an auto vectoring capability. However, it does provide a
vector number that can be used in a software based vectoring scheme. Basic terminology and
pros and cons of edge and level sensitive inputs are described in the remainder of this section.
The functionality of the IntC is described in the sections that follow.
March 2002 www.xilinx.com 93
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Simple Interrupt Controller Specification
R

Edge Sensitive Interrupts

Figure 23 illustrates the three main types of edge generation schemes, using rising edges for
the active edge in this example. In all three schemes, the device generating the interrupt
provides an active edge and some time later the generator produces an inactive edge in
preparation for generating a new interrupt request. In the first scheme, the inactive edge is
depicted as occurring when the interrupt is acknowledged. This is identical to generating a level
sensitive interrupt. The second scheme shows the inactive edge occurring immediately after
the active edge. The third scheme shows the inactive edge occurring immediately before the
active edge. All three schemes are possible and should be detected by the interrupt detection
circuitry without missing an interrupt or causing spurious interrupts.One potential problem with
edge sensitive interrupt schemes is their susceptibility to noise glitches. Also, it may be more
difficult to remember and propagate multiple interrupts when the interrupt service routine does
not handle all active interrupts. In non-auto vectoring interrupt designs, it may be necessary for
the software interrupt handler to service the highest priority interrupt and then check the status
for any additional interrupts that may have arrived before returning from the interrupt handler.
Synchronization logic is usually necessary to avoid metastability problems with asynchronous
inputs.

Level Sensitive Interrupts

In principle, level sensitive interrupts are somewhat simpler to manage. They are simpler to
propagate when multiple sources are present and usually don’t require additional
synchronization logic. The major problem with level sensitive interrupts stems from their
inherent susceptibility to spurious interrupts, and to missed interrupts due to problems that
arise when trying to avoid spurious interrupts.

Simple Interrupt Controller Organization
The Simple IntC is organized into the following three functional units:

• Interrupt detection and request generation

• Programmer registers

• Bus interface

Interrupt Detection

Interrupt detection can be configured for either level or edge detection for each interrupt input.
If edge detection is chosen, synchronization registers are also included. Interrupt request
generation is also configurable as either a pulse output for an edge sensitive request or as a
level output that is reset when the interrupt is acknowledged.

Figure 23: Schemes for Generating Edges

Scheme 1

Scheme 3

Scheme 2

Interrupt
Occurs

Interrupt
Acknowledge
94 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Simple Interrupt Controller Specification
R

Programmer Registers

The interrupt controller contains the following programmer accessible registers:

• Interrupt Status Register (ISR) is a read/write register that, when read, indicates which
interrupt inputs are active (pre enable bits). Writing to the ISR allows software to generate
interrupts until the HIE bit has been enabled.

• Interrupt Pending Register (IPR) is a read only register that provides an indication of
interrupts that are active and enabled (post enable bits). The IPR is an optional register in
the simple IntC and can be parameterized away to reduce FPGA resources required by an
IntC.

• Interrupt Enable Register (IER) is a read/write register whose contents are used to enable
selected interrupts.

• Interrupt Acknowledge Register (IAR) is not an actual register. It is a write-only location
used to clear interrupt requests.

Note The next two address locations are not registers, but provide helper functions that
make setting and clearing IER bits easier.

• Set Interrupt Enables (SIE) is a write only location that provides the ability to set selected
bits within the IER in one atomic operation, rather than requiring a read/modify/write
sequence.

• Clear Interrupt Enables (CIE) is a write-only location that provides the ability to clear
selected bits within the IER in a single atomic operation. Both SIE and CIE are optional in
the Simple IntC and can be parameterized out of the design to reduce FPGA resource
consumption by the IntC.

• Interrupt Vector Register (IVR) is a read-only register that contains the ordinal value of the
highest priority interrupt that is active and enabled. The IVR is optional and can be
parameterized out of the design to reduce IntC FPGA resources.

• Master Enable Register (MER) is a read/write, two-bit register used to enable or disable
the IRQ output and to enable hardware interrupts (when hardware interrupts are enabled,
software interrupts are disabled until the IntC is reset).

Bus Interface

The core interrupt controller functionality is designed with a simple bus interconnect interface.
For a particular bus interface, all that is required is a top level (bus centric) wrapper that
instantiates the IntC core and the desired bus interface module. There are currently two types
of bus interfaces available, providing either an OPB IntC or a DCR IntC.

The On-chip Peripheral Bus (OPB) interface provides a slave interface on the OPB for
transferring data between the OPB IntC and the processor. The OPB IntC registers are
memory mapped into the OPB address space and data transfers occur using OPB byte
enables. The register addresses are fixed on four byte boundaries and the registers and the
data transfers to and from them are always as wide as the data bus.

The number of interrupt inputs is configurable up to the width of the data bus, which is also set
by a configuration parameter. In either bus interface, the base address for the registers is set by
a configuration parameter. Since the inputs and the output are configurable, several Simple
IntC instances can be cascaded to provide any number of interrupt inputs, regardless of the
data bus width. A block diagram of the IntC is shown in Figure 24.
March 2002 www.xilinx.com 95
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Simple Interrupt Controller Specification
R

Figure 24: Interrupt Controller Organization

Level / Edge
Detection

&
Synchronization

Int_inputs IRQ
Generation

Irq

Bus
Interface

A
d
d
re

ss

D
a
ta

C
o
n
tro

l

Bus (OPB or DCR)

Clk

Rst

IntC Core

Reg_addr

Valid_rd

Valid_wr

Data_in

Data_out

Ack

ISR

CIE

IVR

MER

SIE

IAR

IER

IPR

Bus Wrapper
96 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Simple Interrupt Controller Specification
R

Programming
Model

Register Data Types and Organization
All IntC registers are accessed through the OPB bus interface. The base address for these
registers is provided by a configuration parameter. For an OPB IntC each register is accessed
on a 4-byte boundary offset from the base address, regardless of the width of the registers,
providing conformance to the OPB-IPIF register location convention. Since OPB addresses are
byte addresses, OPB IntC register offsets are located at integral multiples of four from the base
address. Table 13 illustrates the registers and their offsets from the base address for an OPB
IntC. Normally, an OPB IntC is configured to be a 32-bit, 16-bit, or an 8-bit OPB peripheral that
corresponds to the width of the processor data bus width. Figure 26 shows the address offsets
and alignment for the OPB IntC for these three bus widths. The IntC registers are read as big-
endian data. The bit and byte labeling for big-endian data types is shown in Figure 25.

Figure 25: Data Types

Byte address n n+3n+2n+1

Byte significance MSByte LSByte

Byte label 0 321

Bit label

Bit significance

0 31

MSBit LSBit

Byte address n n+1

Byte significance MSByte

Byte label 0 1

Bit label

Bit significance

0 15

MSBit LSBit

LSByte

Byte address n

Byte significance MSByte

Byte label 0

Bit label

Bit significance

0 7

MSBit LSBit

Word

Halfword

Byte
March 2002 www.xilinx.com 97
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Simple Interrupt Controller Specification
R

IntC Registers
The eight registers visible to the programmer are shown in Table 13 and described in this
section. In the diagrams and tables that follow, w refers to the width of the data bus (DB).

Note If the number of interrupt inputs is less than the data bus width, the inputs will start with
INT0. INT0 maps to the LSB of the ISR, IPR, IER, IAR, SIE, and CIE, and additional inputs
correspond sequentially to successive bits to the left.

Figure 26: OPB-based Register Offsets and Alignment

ISR

CIE

IVR

MER

SIE

IAR

IER

IPR

ISR

CIE

IVR

MER

SIE

IAR

IER

IPR

ISR

CIE

IVR

MER

SIE

IAR

IER

IPR

MSB

MSB

MSB

LSB

LSB

LSB32-bit Implementation

16-bit Implementation

8-bit
Implementation

OPB Address

BAR + 0

BAR + 28

BAR + 24

BAR + 20

BAR + 16

BAR + 12

BAR + 8

BAR + 4

OPB Address

BAR + 0

BAR + 28

BAR + 24

BAR + 20

BAR + 16

BAR + 12

BAR + 8

BAR + 4

OPB Address

BAR + 0

BAR + 28

BAR + 24

BAR + 20

BAR + 16

BAR + 12

BAR + 8

BAR + 4
98 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Simple Interrupt Controller Specification
R

Unless stated otherwise any register bits that are not mapped to inputs return zero when read
and do nothing when written.

Table 13: IntC Registers and Base Address Offsets

Register Name Abbreviation OPB Offset

Interrupt Status Register ISR 0 (00h)

Interrupt Pending Register IPR 4 (04h)

Interrupt Enable Register IER 8 (08h)

Interrupt Acknowledge Register IAR 12 (0Ch)

Set Interrupt Enable Bits SIE 16 (10h)

Clear Interrupt Enable Bits CIE 20 (14h)

Interrupt Vector Register IVR 24 (18h)

Master Enable Register MER 28 (1Ch)
March 2002 www.xilinx.com 99
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Simple Interrupt Controller Specification
R

Interrupt Status Register (ISR)

When read, the contents of this register indicate the presence or absence of an active interrupt
signal regardless of the state of the interrupt enable bits. Each bit in this register that is set to a
1 indicates an active interrupt signal on the corresponding interrupt input. Bits that are 0 are not
active. The ISR register is writable by software until the Hardware Interrupt Enable (HIE) bit in
the MER has been set. Once that bit has been set, software can no longer write to the ISR.
Given these restrictions, when this register is written to, any data bits that are set to 1 will
activate the corresponding interrupt, just as if a hardware input became active. Data bits that
are zero have no effect. This allows software to generate interrupts for test purposes until the
HIE bit has been set. Once HIE has been set (enabling the hardware interrupt inputs), then
writing to this register does nothing. If there are fewer interrupt inputs than the width of the data
bus, writing a 1 to a non-existing interrupt input does nothing and reading it will return zero. The
ISR is shown in the following diagram and the bits are described in Table 14.

ISR — Interrupt Status Register

INTn INTn-2 INTn-4
↓ ↓ ↓

0 1 2 3 4 5 w-2 w-1

↑ ↑ ↑ ↑
INTn-1 INTn-3 INTn-5 - INT1 INT0

Table 14: Interrupt Status Register

Bits Name Description Reset Value

0

to

(w –1)

INTn – INT0

()

where w is DB width

Interrupt Input n – Interrupt Input 0

0 Read – Not active; Write – No action
1 Read – Active; Write – SW interrupt

0

n w 1–≤
100 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Simple Interrupt Controller Specification
R

Interrupt Pending Register (IPR)

This is an optional register in the simple IntC and can be parameterized out of an
implementation. Reading the contents of this register indicates the presence or absence of an
active interrupt signal that is also enabled. Each bit in this register is the logical AND of the bits
in the ISR and the IER. If there are fewer interrupt inputs than the width of the data bus, reading
a non-existing interrupt input will return zero. The IPR is shown in the following diagram and the
bits are described in Table 15.

IPR — Interrupt Pending Register

INTn INTn-2 INTn-4
↓ ↓ ↓

0 1 2 3 4 5 w-2 w-1

↑ ↑ ↑ ↑
INTn-1 INTn-3 INTn-5 - INT1 INT0

Table 15: Interrupt Pending Register

Bits Name Description Reset Value

0

to

(w – 1)

INTn – INT0

()

where w is DB width

Interrupt Input n – Interrupt Input 0

0 – Not active
1 – Active

0

n w 1–≤
March 2002 www.xilinx.com 101
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Simple Interrupt Controller Specification
R

Interrupt Enable Register (IER)

This is a read/write register. Writing a 1 to a bit in this register enables the corresponding
interrupt input signal. Writing a 0 to a bit disables the corresponding interrupt input signal.
Reading this register indicates which interrupt inputs are enabled, where a one indicates the
input is enabled and a zero indicates the input is disabled. If there are fewer interrupt inputs
than the width of the data bus, writing a 1 to a non-existing interrupt input does nothing and
reading it will return zero. The IER is shown in the following diagram and the bits are described
in Table 16.

IER — Interrupt Enable Register

INTn INTn-2 INTn-4
↓ ↓ ↓

0 1 2 3 4 5 w-2 w-1

↑ ↑ ↑ ↑
INTn-1 INTn-3 INTn-5 - INT1 INT0

Table 16: Interrupt Enable Register

Bits Name Description Reset Value

0

to

(w – 1)

INTn – INT0

()

where w is DB width

Interrupt Input n – Interrupt Input 0

1 – Interrupt enabled
0 – Interrupt disabled

0

n w 1–≤
102 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Simple Interrupt Controller Specification
R

Interrupt Acknowledge Register (IAR)

The IAR is a write only location that clears the interrupt request associated with selected
interrupt inputs. Writing a one to a bit location in the IAR will clear the interrupt request that was
generated by the corresponding interrupt input. Writing zeros does nothing as does writing a
one to a bit that does not correspond to an active input or for which an interrupt input does not
exist. The IAR is shown in the following diagram and the bits are described in Table 17.

IAR — Interrupt Acknowledge Register

INTn INTn-2 INTn-4
↓ ↓ ↓

0 1 2 3 4 5 w-2 w-1

↑ ↑ ↑ ↑
INTn-1 INTn-3 INTn-5 - INT1 INT0

Table 17: Interrupt Acknowledge Register

Bits Name Description Reset Value

0

to

(w – 1)

INTn – INT0

()

where w is DB width

Interrupt Input n – Interrupt Input 0

1 Clear Interrupt
0 no action

n/a

n w 1–≤
March 2002 www.xilinx.com 103
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Simple Interrupt Controller Specification
R

Set Interrupt Enables (SIE)

SIE is a location used to set IER bits in a single atomic operation, rather than using a
read/modify/write sequence. Writing a one to a bit location in SIE will set the corresponding bit
in the IER. Writing zeros does nothing, as does writing a one to a bit location that corresponds
to a non-existing interrupt input. The SIE is optional in the simple IntC and can be
parameterized out of the implementation. The SIE is shown in the following diagram and the
bits are described in Table 18.

SIE — Set Interrupt Enables

INTn INTn-2 INTn-4
↓ ↓ ↓

0 1 2 3 4 5 w-2 w-1

↑ ↑ ↑ ↑
INTn-1 INTn-3 INTn-5 - INT1 INT0

Table 18: Set Interrupt Enables

Bits Name Description Reset Value

0

to

(w – 1)

INTn – INT0

()

where w is DB width

Interrupt Input n – Interrupt Input 0

1 Set IER bit
0 no action

n/a

n w 1–≤
104 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Simple Interrupt Controller Specification
R

Clear Interrupt Enables (CIE)

CIE is a location used to clear IER bits in a single atomic operation, rather than using a
read/modify/write sequence. Writing a one to a bit location in CIE will clear the corresponding
bit in the IER. Writing zeros does nothing, as does writing a one to a bit location that
corresponds to a non-existing interrupt input. The CIE is also optional in the simple IntC and
can be parameterized out of the implementation. The CIE is shown in the following diagram
and the bits are described in Table 19.

CIE — Clear Interrupt Enables

INTn INTn-2 INTn-4
↓ ↓ ↓

0 1 2 3 4 5 w-2 w-1

↑ ↑ ↑ ↑
INTn-1 INTn-3 INTn-5 - INT1 INT0

Table 19: Clear Interrupt Enables

Bits Name Description Reset Value

0

to

(w – 1)

INTn – INT0

()

where w is DB width

Interrupt Input n – Interrupt Input 0

1 Clear IER bit
0 no action

n/a

n w 1–≤
March 2002 www.xilinx.com 105
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Simple Interrupt Controller Specification
R

Interrupt Vector Register (IVR)

The IVR is a read-only register and contains the ordinal value of the highest priority, enabled,
active interrupt input. INT0 (always the LSB) is the highest priority interrupt input and each
successive input to the left has a correspondingly lower interrupt priority. If no interrupt inputs
are active then the IVR will contain all ones. The IVR is optional in the simple IntC and can be
parameterized out of the implementation. The IVR is shown in the following diagram and
described in Table 20.

IVR — Interrupt Vector Register

0 w-1

↑
Interrupt Vector Number

Table 20: Interrupt Vector Register

Bits Name Description Reset Value

0

to

(w – 1)

Interrupt Vector
Number

Ordinal of highest priority, enabled,
active interrupt input

all ones
106 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Simple Interrupt Controller Specification
R

Master Enable Register (MER)

This is a two bit, read/write register. The two bits are mapped to the two least significant bits of
the location. The least significant bit contains the Master Enable (ME) bit and the next bit
contains the Hardware Interrupt Enable (HIE) bit. Writing a 1 to the ME bit enables the IRQ
output signal. Writing a 0 to the ME bit disables the IRQ output, effectively masking all interrupt
inputs.

The HIE bit is a write once bit. At reset this bit is reset to zero, allowing software to write to the
ISR to generate interrupts for testing purposes, and disabling any hardware interrupt inputs.
Writing a one to this bit enables the hardware interrupt inputs and disables software generated
inputs. Writing a one also disables any further changes to this bit until the device has been
reset.

Writing ones or zeros to any other bit location does nothing. When read, this register will reflect
the state of the ME and HIE bits. All other bits will read as zeros. The MER is shown in the
following diagram and is described in Table 21.

MER — Master Enable Register

HIE
↓

0 w-3 w-2 w-1

↑ ↑
Reserved ME

Table 21: Master Enable Register

Bits Name Description Reset Value

0

to

(w – 3)

Unused Not used 0

(w – 2) HIE Hardware Interrupt Enable

0 Read – SW interrupts enabled
Write – no effect

1 Read – HW interrupts enabled
Write – Enable HW interrupts

0

(w – 1) ME Master IRQ Enable

0 IRQ disabled – all interrupts disabled
1 IRQ enabled – all interrupts enabled

0

March 2002 www.xilinx.com 107
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Simple Interrupt Controller Specification
R

Programming the IntC
This section provides an overview of software initialization and communication with an IntC.

Terminology

The number of interrupt inputs that an IntC has is set by the C_NUM_INTR_INPUTS generic
described in Table 24. The first input is always Int0 and is mapped to the LSB of the registers
(except IVR and MER). A valid interrupt input signal is any signal that provides the correct
polarity and type of interrupt input. Examples of valid interrupt inputs are rising edges, falling
edges, high levels, and low levels (hardware interrupts), or software interrupts if HIE has not
been set. Each interrupt input can be selectively enabled or disabled (masked). The polarity
and type of each hardware interrupt input is specified in the IntC generics C_KIND_OF_INTR,
C_KIND_OF_EDGE, and C_KIND_OF_LVL (see Table 24). Software interrupts do not have
any polarity or type associated with them, so, until HIE has been set, they are always valid. Any
valid interrupt input signal that is applied to an enabled interrupt input will generate a
corresponding interrupt request within the IntC. All interrupt requests are combined (an OR
function) to form a single interrupt request output that can be enabled or disabled (masked).

Initialization and Communication

During power-up or reset, an IntC is put into a state where all interrupt inputs and the interrupt
request output are disabled. In order for the IntC to accept interrupts and request service, the
following steps are required:

1. Each bit in the IER corresponding to an interrupt input must be set to a one. This allows the
IntC to begin accepting interrupt input signals. Int0 has the highest priority, and it
corresponds to the least significant bit (LSB) in the IER.

2. The MER must be programmed based on the intended use of the IntC. There are two bits
in the MER: the Hardware Interrupt Enable (HIE) and the Master IRQ Enable (ME). The ME
bit must be set to enable the interrupt request output.

3. If software testing is to be performed, the HIE bit must remain at its reset value of zero.
Software testing can now proceed by writing a one to any bit position in the ISR that
corresponds to an existing interrupt input. A corresponding interrupt request is generated if
that interrupt is enabled, and interrupt handling proceeds normally.

4. Once software testing has been completed, or if software testing is not performed, a one is
written to the HIE bit, which enables the hardware interrupt inputs and disables any further
software generated interrupts.

5. After a one has been written to the HIE bit, any further writes to this bit have no effect. This
feature prevents stray pointers from accidentally generating unwanted interrupt requests,
while still allowing self-test software to perform system tests at power-up or after a reset.

Reading the ISR indicates which inputs are active. If present, the IPR indicates which enabled
inputs are active. Reading the optional IVR provides the ordinal value of the highest priority
interrupt that is enabled and active. For example, if the IVR is present, and a valid interrupt
signal has occurred on the Int3 interrupt input and nothing is active on Int2, Int1, and Int0,
reading the IVR will provide a value of three. If Int0 becomes active then reading the IVR
provides a value of zero. If no interrupts are active or it is not present, reading the IVR returns
all ones.

Acknowledging an interrupt is achieved by writing a one to the corresponding bit location in the
IAR. An interrupt acknowledge clears the corresponding interrupt request. However, if a valid
interrupt signal remains on that input (another edge occurs or an active level still exists on the
corresponding interrupt input), a new interrupt request output is generated. Also, all interrupt
requests are combined to form the Irq output so any remaining interrupt requests that have not
been acknowledged will cause a new interrupt request output to be generated.

The software can disable the interrupt request output at any time by writing a zero to the ME bit
in the MER. This effectively masks all interrupts for that IntC. Alternatively, interrupt inputs can
be selectively masked by writing a zero to each bit location in the IER that corresponds to an
108 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Simple Interrupt Controller Specification
R

input that is to be masked. If present, SIE and CIE provide a convenient way to enable or
disable (mask) an interrupt input without having to read, mask off, and then write back the IER.
Writing a one to any bit location(s) in the SIE sets the corresponding bit(s) in the IER without
affecting any other IER bits. Writing a one to any bit location(s) in the CIE clears the
corresponding bit(s) in the IER without affecting any other IER bits.

Implementation The IntC is implemented to minimize area. Consequently, all configurable elements within the
design are based on generics (parameters) and any unused or unselected capabilities are not
implemented (see the Parameterization section).

I/O Summary
The following tables provide information on I/O signals. I/Os that are common for all IntC types
are shown in Table 22. Table 23 shows I/Os that are specific to an OPB IntC.

Parameterization
The following characteristics of the IntC are parameterizable:

• Base address for the Simple IntC registers and the upper address of the memory space
occupied by the IntC (C_BASEADDR, C_HIGHADDR).

• Edge or level sensitivity on interrupt inputs as well as the polarity (C_KIND_OF_INTR,
C_KIND_OF_EDGE, C_KIND_OF_LVL).

• Edge (pulse) or level IRQ generation, and the polarity of the IRQ output
(C_IRQ_IS_LEVEL, C_IRQ_ACTIVE).

Table 22: Core IntC I/O Summary

Port

Name Direction Description Type Range

Intr in Interrupt intputs Std_Logic_Vector C_NUM_INTR_INPUTS – 1 downto 0

Irq out IntC interrupt request output Std_Logic n/a

Table 23: OPB IntC I/O Summary

Port Name Direction Description Type Range

OPB_Clk in OPB clock Std_Logic n/a

OPB_Rst in OPB reset, active high Std_Logic n/a

OPB_select in OPB select Std_Logic n/a

OPB_ABus in OPB address bus Std_Logic_Vector 0 to C_OPB_AWIDTH – 1

OPB_RNW in OPB read not write enable (read
high, write low)

Std_Logic n/a

OPB_BE in OPB byte enables Std_Logic_Vector 0 to (C_OPB_DWIDTH / 8) – 1

OPB_DBus in OPB data bus (OPB to IntC) Std_Logic_Vector 0 to C_OPB_DWIDTH – 1

IntC_DBus out IntC data bus (IntC to OPB) Std_Logic_Vector 0 to C_OPB_DWIDTH – 1

IntC_xferAck out IntC transfer acknowledge Std_Logic n/a

IntC_ErrAck out IntC error acknowledge Std_Logic n/a

OPB_seqAddr in OPB sequential address enable Std_Logic n/a

IntC_toutSup out IntC timeout suppress Std_Logic n/a

IntC_retry out IntC retry request Std_Logic n/a
March 2002 www.xilinx.com 109
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Simple Interrupt Controller Specification
R

• Address bus width (C_OPB_AWIDTH).

• Bus interface: Normally 8-bit, 16-bit or 32-bit data widths for the OPB IntC
(C_OPB_DWIDTH).

• The number of interrupt inputs is parameterizable up to the width of the data bus
(C_NUM_INTR_INPUTS).

• The presence of the IPR (C_HAS_IPR).

• The presence of the SIE and CIE (C_HAS_SIE, C_HAS_CIE).

• The presence of the IVR (C_HAS_IVR).

Table 24 lists the top level generics (parameters) that are common to all variations of an IntC.

Table 24: Generics (Parameters) Common to all IntC Instantiations

Generic Name Description Type Valid Values

C_FAMILY Target FPGA family type (not
currently used).

String "spartan2", "spartan2e",

"virtex", "virtexe",

"virtex2", "virtex2pro"

C_Y Row placement directive (not
currently used).

Integer Any valid row value for the selected
target family.

C_X Column placement directive
(not currently used).

Integer Any valid column value for the selected
target family.

C_U_SET User set for grouping (not
currently used).

String "intc"

C_BASEADDR Base address for accessing the
IntC registers.

Std_Logic_Vector Any valid 32-byte boundary address for
the IntC instance. 1

C_HIGHADDR Upper address value of the
memory map entry for the IntC.
Used in conjunction with
C_BASEADDR to determine
the number of upper address
bits to use for address
decoding.

Std_Logic_Vector Any valid address for the IntC instance
that is at least 32 bytes (8 words) greater
than C_BASEADDR. 2

C_NUM_INTR_INPUTS Number of interrupt inputs. Integer 1 up to the width of the data bus.

C_KIND_OF_INTR Type of interrupt for each input

X = none

1 = edge

0 = level.

Std_Logic_Vector A little-endian vector the same width as
the data bus containing a 0 or 1 in each
position corresponding to an interrupt
input.

C_KIND_OF_EDGE Type of each edge sensitive
input

X = n/a

1 = rising

0 = falling.

Std_Logic_Vector A little-endian vector the same width as
the data bus containing a 0 or 1 in each
position corresponding to an interrupt
input.

C_KIND_OF_LVL Type of each level sensitive
input

X = n/a

1 = high

0 = low.

Std_Logic_Vector A little-endian vector the same width as
the data bus containing a 0 or 1 in each
position corresponding to an interrupt
input.
110 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Simple Interrupt Controller Specification
R

Table 25 lists the top level generics (parameters) that are present in an OPB IntC.

C_HAS_IPR Indicates the presence of IPR. Integer 0 = not present

1 = present

C_HAS_SIE Indicates the presence of SIE. Integer 0 = not present

1 = present

C_HAS_CIE Indicates the presence of CIE. Integer 0 = not present

1 = present

C_HAS_IVR Indicates the presence of IVR. Integer 0 = not present

1 = present

C_IRQ_IS_LEVEL Indicates whether the Irq output
uses level (or edge)
generation.

Integer 0 = edge generation

1 = level generation

C_IRQ_ACTIVE Indicates the sense of the Irq
output

Std_Logic ’0’ = falling / low

’1’ = rising / high

Notes:
1. C_BASEADDR must begin on a 32-byte address boundary for OPB and an 8-word boundary for DCR. For an OPB IntC this means

the low 5 address bits must be zero. For a DCR IntC this means the low three address bits must be zero.
2. C_HIGHADDR is required to be at least C_BASEADDR + 31 for an OPB IntC or C_BASEADDR + 7 for a DCR IntC in order to

provide space for the eight 32-bit addresses used by the simple IntC registers. However, a bigger memory map space allocated to
the simple IntC will reduce the FPGA resources required for decoding the address. For example:
C_BASEADDR = 0x70800000
C_HIGHADDR = 0x7080001F
provides the maximum address decode resolution for an OPB IntC, requiring the upper 27 address bits to be decoded. This choice
will increase the number of FPGA resources required for implementation and may adversely affect the maximum operating
frequency of the system. Conversely,
C_BASEADDR = 0x70800000
C_HIGHADDR = 0x7FFFFFFF
will significantly reduce the address decoding logic for an OPB IntC (only the 4 upper address bits), resulting in a smaller and faster
implementation. A similar situation exists for the DCR IntC with the exception that the addresses are only ten bits wide, so the
maximum address decode resolution for a DCR IntC requires seven upper address bits to be decoded.

Table 24: Generics (Parameters) Common to all IntC Instantiations

Generic Name Description Type Valid Values

Table 25: Generics (Parameters) for an OPB IntC

Generic Name Description Type Valid Values

C_OPB_AWIDTH Width of the OPB address bus. Integer 32

C_OPB_DWIDTH Width of the OPB data buses. Integer 8, 16, or 32
March 2002 www.xilinx.com 111
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Simple Interrupt Controller Specification
R

112 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Summary This document provides the design specification for the External Memory Controller (EMC)
Intellectual Property (IP) solution. This document applies to the following peripherals:

Introduction This specification defines the architecture and interface requirements for the EMC. This
module supports data transfers between the On-chip Peripheral Bus (OPB) and external
memory devices such as SRAM and Flash devices. Example devices for use with this
controller are the Integrated Device Technology, Inc. IDT71V416S SRAM and the Intel
28F128J3A StrataFlash Memory Devices. The EMC module is organized to be an OPB slave-
only device, which differs from the IBM EBC specification.

The Xilinx EMC design allows you to tailor the EMC to suit your application by setting certain
parameters to enable or disable features. Quick links are provided to the following sections:

• EMC Parameters

• EMC I/O Signals

• EMC Address Map and Register Descriptions

• Connecting to Memory (SRAM and StrataFlash)

EMC Overview Features
The EMC is a soft IP core designed for Xilinx FPGAs and has the following features:

• Parameterized for up to a total of eight memory (SRAM / Flash) banks

- Separate base addresses and address range for each bank of memory

• Separate Control Register for each bank of memory to control memory mode

• OPB V2.0 bus interface with byte-enable support

• Supports 128-bit, 64-bit, 32-bit, 16-bit, and 8-bit bus interfaces

• Supports memory width of 128-bits, 64 bits, 32-bits, 16 bits, or 8 bits

• Memory width is independent of OPB bus width (memory width must be less than or equal
to OPB bus width)

• Configurable wait states for read, write, read in page, read recovery before write, and write
recovery before read

• Optional faster access for in-page read accesses (page size 8 bytes)

• System clock frequency of up to 133 MHz

Xilinx Embedded Processors: OPB Peripherals

March 2002

OPB External Memory Controller (EMC)
R

opb_memcon v1.00a
March 2002 www.xilinx.com 113
MicroBlaze Hardware Reference Guide 1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

OPB External Memory Controller (EMC)
R

EMC Background
The EMC implements the hardware and software functionality of the IBM External Bus
Controller operating as a slave on the OPB. The EMC module receives instructions from the
OPB to read and write to external SRAMs and Flash. The implementation does not include the
features of the External Master Interface as described in the IBM External Bus Controller
Functional Specification (v. C12E0623_EBC). Additional features that are not implemented are
as follows:

• Attachment of an external master device to gain access to all OPB slave devices

• Device Control Register (DCR) interface

• Sharing of the I/O pins on the module with the SDRAM controller IBM specification
number (v. C12E0622_HSPLB_MC).

The OPB Memory Controller provides an interface between the OPB and one to eight external
banks of memory components, such as the Intel StrataFlashTM or the IDT71V416S SRAM
memory. The controller supports OPB data bus widths of 8 to 128 bits, and memory subsystem
widths of 8 to 128 bits. You can configure the controller to support page-mode reads that can
be up to six times faster than non-page reads. The in-page detection logic is automatically
configured out of the controller if page mode is not required.

The Flash memory controller is organized much like an SRAM interface. This controller
assumes that the Flash programming circuitry is built into the Flash components and that the
command interface to the Flash is handled in software. The controller provides basic read/write
control signals and the ability to configure the access times for read, read-in-page, write, and
recovery times when switching from read to write or write to read.

This controller supports the OPB V2.0 byte enable architecture. Any access size up to the width
of the OPB data bus is permitted. Limitations may apply when the memory components limit
the allowed transfer types, such as memory devices configured in 16-bit or 32-bit mode with no
byte enable support.

EMC
Parameters

Certain features can be parameterized in the EMC design to allow you to obtain an EMC that
is uniquely tailored to your system. This allows you to configure a design that only utilizes the
resources required by your system, and operates with the best possible performance. The
features that can be parameterized in the Xilinx EMC design are shown in Table 26.

Table 26: EMC Parameters

Feature/Description Parameter Name Allowable Values
Default
Value VHDL Type

Number of Memory Banks C_NUM_BANKS_MEM 1 - 8 2 integer

OPB Clock Period C_OPB_CLOCK_PERIOD_PS Integer number of
picoseconds

40000 integer

Control Register Bank Base
Address

C_BASEADDR Valid Address
Range(3)

None(4) std_logic_vector

Control Register Bank High
Address

C_HIGHADDR Address range must
be a power of 2 and
> 0x01F(3)

None(4) std_logic_vector

Flash/SRAM Base Address
x = 0 to 7

C_MEMx(1,2)_BASEADDR Valid Address
Range(3)

None(4) std_logic_vector

Flash/SRAM High Address
x = 0 to 7

C_MEMx(1,2)_HIGHADDR Address range must
be a power of 2 and
≤ OPB Address
Space(3)

None(4) std_logic_vector

OPB Data Bus Width C_OPB_DWIDTH 32,64 64 integer
114 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB External Memory Controller (EMC)
R

OPB Address Bus Width C_OPB_AWIDTH 8 - 32 32 integer

Width of Data Bus to
Memory Devices

C_MEM_WIDTH ≤ C_OPB_DWIDTH 64 integer

Address access time for
reads when
EMCCRx[0] = 0 or
EMCCRx[1] = 1 and access
is out of page(6)

C_RD_ADDR_TO_OUT_SLOW_PS_x(1) Integer number of
picoseconds

Refer to
Data Sheet
of particular
Memory
Device

integer

Address valid to end of write
when EMCCRx[0] = 0(5,6)

C_WR_ADDR_TO_OUT_SLOW_PS_x(1) Integer number of
picoseconds

Refer to
Data Sheet
of particular
Memory
Device

integer

Minimum time that write
enable goes low (follows
address being driven out).
Applies to all writes.(5,6)

C_WR_MIN_PULSE_WIDTH_PS_ x(1) Integer number of
picoseconds

Refer to
Data Sheet
of particular
Memory
Device

integer

Address access time for
reads when
EMCCRx[0] = 1 or
EMCCRx[1] = 1 and access
is in page(6)

C_RD_ADDR_TO_OUT_FAST_PS_x(1) Integer number of
picoseconds

Refer to
Data Sheet
of particular
Memory
Device

integer

Address valid to end of write
when EMCCRx[0] = 1(5,6)

C_WR_ADDR_TO_OUT_FAST_PS_x(1) Integer number of
picoseconds

Refer to
Data Sheet
of particular
Memory
Device

integer

Delay inserted before Write
Enable goes low if previous
access was Read. (6)

C_RD_RECOVERY_BEFORE_WR_PS_x(1) Integer number of
picoseconds

Refer to
Data Sheet
of particular
Memory
Device

integer

Delay inserted before
Output Enable goes low if
previous access was Write.
(6)

C_WR_RECOVERY_BEFORE_RD_PS_x(1) Integer number of
picoseconds

Refer to
Data Sheet
of particular
Memory
Device

integer

Notes:
3. x = values for memory banks 0 to 7
4. This design can accommodate up to 8 Banks of Flash and/or SRAM. The address range generics are designated as

C_MEM0_BASEADDR, C_MEM1_BASEADDR, C_MEM0_HIGHADDR, C_MEM1_HIGHADDR, etc.
5. Address range specified by C_BASEADDR and C_HIGHADDR must be a power of 2 and >=0x01F. C_MEMx(4)_BASEADDR and

C_MEMx_HIGHADDR must be a power of 2 and less than or equal to the OPB address space.
6. No default value is specified for C_BASEADDR and C_HIGHADDR AND C_MEMx_BASEADDR, C_MEMx_HIGHADDR to insure

that the actual value is set; if the value is not set, a compiler error is generated. These generics must be a power of 2 and encompass
the memory size for C_MEMx_BASEADDR, C_MEMx_HIGHADDR.

7. Write enable low time is the maximum of C_WR_ADDR_TO_OUT_FAST/SLOW_PS and C_WR_MIN_PULSE_WIDTH.
8. As specified by the memory device data sheet.

Table 26: EMC Parameters

Feature/Description Parameter Name Allowable Values
Default
Value VHDL Type
March 2002 www.xilinx.com 115
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB External Memory Controller (EMC)
R

EMC I/O Signals The I/O signals for the EMC are listed in Table 27.

OPB Timing This section describes the basic read and write timing for the OPB. For detailed descriptions,
refer to the IBM OPB Specification(v2.0). An OPB cycle is initiated with a master request. The
highest priority request is granted the bus, and in the next cycle the master asserts the bus
select signal and begins the transfer. The transfer is completed with the return of transfer
acknowledge, retry, or error acknowledge.

Table 27: EMC I/O Signals

Signal Name Interface I/O Description

OPB_Clk OPB I OPB Clock

OPB_Rst OPB I OPB Reset

OPB_ABus(0:C_OPB_AWIDTH-1) OPB I OPB Address Bus

OPB_BE(0:C_OPB_DWIDTH/8-1) OPB I OPB Byte Enables

OPB_DBus(0:C_OPB_DWIDTH-1) OPB I OPB Data Bus

OPB_RNW OPB I OPB Read, Not Write

OPB_select OPB I OPB Select

OPB_seqAddr OPB I OPB Sequential Address

MemCon_DBus(0:C_OPB_DWIDTH-1) OPB O Memory Controller Data Bus

MemCon_errAck OPB O Memory Controller Error Acknowledge

MemCon_retry OPB O Memory Controller Retry

MemCon_toutSup OPB O Memory Controller Timeout Suppress

MemCon_xferAck OPB O Memory Controller Transfer Acknowledge

Mem_STS(0:C_NUM_BANKS_MEM-1 IP Core I Memory Status Signal

Mem_DQ_I(0:C_MEM_WIDTH-1) IP Core I Memory Input Data Bus

Mem_DQ_O(0:C_MEM_WIDTH-1) IP Core O Memory Output Data Bus

Mem_DQ_T IP Core O Memory Output 3-state Signal

Mem_A(0:C_OPB_AWDITH-1) IP Core O Memory Address Bus

Mem_RPN IP Core O Memory Reset/Power Down

Mem_CEN(0:C_NUM_BANKS_MEM-1) IP Core O Memory Chip Enables

Mem_OEN IP Core O Memory Output Enable

Mem_WEN IP Core O Memory Write Enable

Mem_QWEN(0:(C_MEM_WIDTH/8) -1) IP Core O Memory Qualified Write Enables

Mem_BEN(0:(C_MEM_WIDTH/8) -1) IP Core O Memory Byte Enables
116 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB External Memory Controller (EMC)
R

March 2002 www.xilinx.com 117
MicroBlaze Hardware Reference Guide 1-800-255-7778

Figure 27: Basic OPB Data Transfer

Figure 28: OPB Data Transfer with Continuous Master Request

Figure 29: OPB Full-Word Read/Write

Cycles

OPBClk

M1_request

OPB_M1Grant

OPB_select

M1_select

M1_RNW

M1_ABus

Sl_xferAck

Sl_DBus

Sl_DBusEn

7

valid address

valid data

0 1 2 3 4 5 6

Cycles

OPBClk

M1_request

OPB_M1Grant

M1_select

OPB_xferAck

OPB_ABus

OPB_DBus

7

A0 A1 A2 A3

D0 D1 D2 D3

0 1 2 3 4 5 6

Cycles

OPBClk

M_request[1]

OPB_MGrant[1]

OPB_select

OPB_xferAck

OPB_ABus

OPB_DBus

M1_select

M1_RNW

M1_ABus

M1_DBus

M1_DBusEn

Sl_DBus

Sl_DBusEn

7

A0 A1 A2

D0 D1 D2

A0 A1 A2

D1

DO D2

0 1 2 3 4 5 6

OPB External Memory Controller (EMC)
R

EMC Address
Map and
Register
Descriptions

The EMC supports up to 8 banks of SRAM and/or Flash memory. Each memory bank has an
independent base address and address range. The address range of a bank of memory is
restricted to be a power of 2. If the desired address range is represented by 2n, then the n least
significant bits of the base address must be 0. For example, a memory bank with an
addressable range of 16M (224) bytes could have a base address of 0xFF000000 and a high
address of 0xFFFFFFFF. A memory bank with an addressable range of 64K (216) bytes could
have a base address of 0xABCD0000 and a high address of 0xABCDFFFF. The addresses for
each bank of memory are shown in Table 28.

The EMC contains addressable control registers for write operations as shown in Table 29. The
base address for these registers is set in the parameter C_BASEADDR which represents the
address of the Memory Bank Control Register.

Table 29 shows all of the EMC control registers and addresses when all memory banks are
used. Only control registers for memory banks that are used are present in the design.

Note The register definitions and address locations of the Xilinx EMC deviate from the IBM
EBC specification. This deviation is necessary as a slave-only implementation for the EBC and
because there is no DCR interface.

Table 28: EMC Memory Banks

Memory Base Address High Address Access

Bank 0 C_MEM0_BASEADDR C_MEM0_HIGHADDR R/W

Bank 1 C_MEM1_BASEADDR C_MEM1_HIGHADDR R/W

Bank 2 C_MEM2_BASEADDR C_MEM2_HIGHADDR R/W

Bank 3 C_MEM3_BASEADDR C_MEM3_HIGHADDR R/W

Bank 4 C_MEM4_BASEADDR C_MEM4_HIGHADDR R/W

Bank 5 C_MEM5_BASEADDR C_MEM5_HIGHADDR R/W

Bank 6 C_MEM6_BASEADDR C_MEM6_HIGHADDR R/W

Bank 7 C_MEM7_BASEADDR C_MEM7_HIGHADDR R/W

Table 29: EMC Control Registers

Register Name OPB Address Access

MEM0 Control Register (EMCCR0) C_BASEADDR + 0x00 Write

MEM1 Control Register (EMCCR1) C_BASEADDR + 0x04 Write

MEM2 Control Register (EMCCR2) C_BASEADDR + 0x08 Write

MEM3 Control Register (EMCCR3) C_BASEADDR + 0x0C Write

MEM4 Control Register (EMCCR4) C_BASEADDR + 0x10 Write

MEM5 Control Register (EMCCR5) C_BASEADDR + 0x14 Write

MEM6 Control Register (EMCCR6) C_BASEADDR + 0x18 Write

MEM7 Control Register (EMCCR7) C_BASEADDR + 0x1C Write

Notes:
1. This design can accommodate up to 8 Banks of Flash and/or SRAM, and are therefore designated

as C_MEM0_BASEADDR, C_MEM1_BASEADDR, etc.
2. Each bank of memory’s control register is the same as described below.
118 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB External Memory Controller (EMC)
R

EMC Control Register (EMCCR)
The EMC Control Register is shown below. The first row of the table is the bit location, the
second row contains the reset value for that bit.

Table 30 shows the Control Register bit definitions. The Control Register definition deviates
from the IBM EBC specification because the DCR is not supported in the design.

EMC Block
Diagram

Memory Data Types and Organization
Depending on the size of the bus attached to the processor, memory can be accessed through
the EMC as follows:

• byte (8 bits)

• halfword (2 bytes)

• word (4 bytes)

• doubleword (8 bytes)

• 128-bit (16 bytes)

FS
↓

0 29 30 31

↑
PM

Table 30: EMC Control Register Bit Definitions

Bit(s) Name Core Access Reset Value Description

0 - 29 Reserved

30 PM Read/Write ’0’(1) Page Mode Enable. Determines whether
or not in-page detection logic is created
with a corresponding decrease in read
access time for in-page reads.

• ’0’ - Page Mode is Disabled

• ’1’ - Page Mode is Enabled

31 FS Read/Write ’0’(1) Fast/Slow Mode Enable. Determines the
number of Wait States required based on
the input timing parameters.

• ’0’ - Slow Access Time

• ’1’ - Fast Access Time

Table 31: EMC Control Register Bit Functionality

Read/Write PM Enable FS Enable Function

Read 0 0 Slow access

0 1 Fast access

1 X Fast in page, slow not in page

Write X 0 Slow access

X 1 Fast access
March 2002 www.xilinx.com 119
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB External Memory Controller (EMC)
R

For the OPB, data is organized as big-endian. The bit and byte labeling for the big-endian data
types is shown in Figure 30.

Figure 30: Big-Endian Data Types

n n+1 n+2 n+3

0 1 2 3

MSByte LSByte

0 31

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n n+1

0 1

MSByte LSByte

0 15

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n

0

MSByte

0 7

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

Byte

Halfword

Word

n

0 1 2

MSB LSB

0 63

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

Word

n+1 n+2 n+3 n+4 n+5 n+6 n+7

3 4 5 6 7
Double
120 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB External Memory Controller (EMC)
R

Figure 31 depicts the Memory Control Block Diagram implemented in the EMC.

Figure 31: EMC Memory Control Block Diagram

Device Interconnect

Data Steering/muxing

Control Signal
Generation

Address
Decode

Page
Detection

Wait State
Generation

Input/Output Registers

External Bus

IPIC

Write DataAddressControl Read Data

8

MEMORY BANKS (0 TO 7)

 IPIF (Bus Interface)

Host Bus (PLB or OPB)

Memory Controller
March 2002 www.xilinx.com 121
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB External Memory Controller (EMC)
R

Figure 32 depicts the Memory Control State Diagram implemented in the EMC.

Memory
Controller
Operation

Basic Timing for Memory
The Memory Controller is designed to connect to a variety of memory subsystem
configurations. For detailed descriptions on the timing and protocol of the IDT 71V416S SRAM
and the Intel 28F128J3 StrataFlash, refer to the appropriate data sheet. However, basic read
and write timing diagrams are listed below. Figure 33 and Figure 34 illustrate the basic read
and write functions for the SRAM. Table 32 defines the symbols used in the figures for the
SRAM.

Figure 32: EMC Memory Control State Diagram

START

WRITE_REC

AFTER_ACK

ASSERT_OE ASSERT_WE

READ_REC

valid_write and
prev_access_read and

recover

(valid_read and

and recover)

(valid_read and
not(recover))

(valid_write and
not(prev_access_read)

(valid_write and
not(recover))

or
and recover)

prev_access_read

or

valid_read and
not(prev_access_read)

and recover

count_rec_tc count_rec_tc

count_wait_tccount_wait_tc

Figure 33: Timing Waveform for SRAM Read Cycle

MEM_A

Mem_OEN

Mem_CEN

Mem_BEN

Mem_DQ_0

A0

Data_Out_Valid

t
RC

t
AA

t
OE

t
ACS

t
BE

t
OH
122 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB External Memory Controller (EMC)
R

Figure 34: Timing Waveform for SRAM Write Cycle

Table 32: SRAM Parameter Description

Symbol Parameter(1)

READ CYCLE

tRC Read Cycle Time

tAA Address Access Time

tACS Chip Select Access Time

tOE Output Enable Low to Output Valid

tOH Output Hold from Address Change

tBE Byte Enable Low to Output Valid

WRITE CYCLE

tWC Write Cycle Time

tAW Address Valid to End of Write

tCW Chip Select Low to End of Write

tBW Byte Enable Low to End of Write

tAS Address Set-up Time

tWR Address Hold from End of Write

tWP Write Pulse Width

tDW Data Valid to End of Write

tDH Data Hold Time

tOW Write Enable High to Output Low-Z

Notes:
1. Refer to IDT71V416S Data Sheet for specific timing parameters.
2. WEN is HIGH for Read Cycle
3. Address must be valid prior to or coincident with the later CEN, BEN transition LOW; otherwise

tAA is the limiting parameter
4. Write Cycle Timing is WEN controlled.

MEM_A

Mem_CEN

Mem_BEN

Mem_WEN

Mem_DQ_0

Mem_DQ_I

A0

Previous_Data_ValidPrevious_Data_Valid Data_Valid

Data_In_Valid

t
WC

t
AW

t
CW

t
BW

t
WP

t
AS

t
WR

t
DW

t
DH

t
OW
March 2002 www.xilinx.com 123
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB External Memory Controller (EMC)
R

Figure 35 and Figure 36 illustrate the basic read and write functions for StrataFlash. Table 33
defines the symbols used in the figures for StrataFlash.

Figure 35: Waveform for Page-mode and Standard Word/byte Read Operation

Figure 36: Waveform for Write Operations

Table 33: StrataFlash Parameter Description

Symbol Parameter(1)

READ ONLY

tAVAV Read/Write Cycle Time

tAVQV Address to Output Delay

tELQV CEN to Output Delay

tGLQV OEN to Non-Array Output Delay

tELQX CEN to Output Low-Z

tGLQX OEN to Output Low-Z

tEHQZ CEN High to Output in High-Z

MEM_A(3:23)

MEM_A[0:2)]

Mem_CEN

Mem_OEN

Mem_WEN

Mem_DQ_0

Address_Valid Address_Valid Addtress_Valid Address_Valid

Data_Valid Data_Valid Data_Valid Data_Valid

t
AVAV

t
AVQV

t
ELQV

t
GLQV

t
APA

t
EHEL

t
EHQZ

t
GHQZ

t
OH

t
ELQX

t
GLQX

Annotation

MEM_A

Mem_CEN

Mem_OEN

Mem_WEN

Mem_DQ_0

A B C D E F

Address_Valid Address_Valid

DIN DIN Valid SRD DIN

t
ELWL

t
WP

t
DVWH

t
AVWH

t
WHEH

t
WHDX

t
WHAX

t
WHGL

t
WHQV

t
WPH
124 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB External Memory Controller (EMC)
R

Connecting to
Memory

The three primary considerations for connecting the controller to memory devices are the width
of the OPB data bus, the width of the memory subsystem, and the number of memory devices
used. The width of the memory subsystem is the maximum width of data that can be read from
or written to the memory subsystem. The memory width must be less than or equal to the OPB
data bus width.

The data and address signals at the memory controller are labeled with big-endian bit labeling
(for example, D(0:31), D(0) is the MSB). Most memory devices are either endian-agnostic (they
can be connected either way) or little-endian D(31:0) with D(31) as the MSB.

Note Exercise caution with the connections to the external memory devices to avoid incorrect
data and address connections. The following tables show the correct mapping of memory
controller pins to memory device pins.

tGHQZ OEN High to Output in High-Z

tOH Output Hold from Address, CEN, or OEN Change, Whichever
occurs first

tEHEL CEN High to CEN Low

tAPA Page Address Access Time

Write Operations

A Power-up and standby

B Write block erase, write buffer, or program set-up

C Write block erase or write buffer confirm, or valid address and data

D Automated erase delay

E Read status register or query data

F Write read array command

tELWL CEN(WEN) Low to WEN(CEN) Going Low

tWP Write Pulse Width

tDVWH Data Setup to WEN(CEN) Going High

tAVWH Address Setup to WEN(CEN) Going High

tWHEH CEN(WEN) Hold from WEN(CEN) High

tWHDX Data Hold from WEN(CEN) High

tWHAX Address Hold from WEN(CEN) High

tWPH Write Pulse High

tWHGL Write Recovery before Read

Notes:
1. Refer to Intel 28F128J3A Data Sheet for specific timing parameters.

Table 33: StrataFlash Parameter Description

Symbol Parameter(1)
March 2002 www.xilinx.com 125
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB External Memory Controller (EMC)
R

Example
Memory
Connections

Example 1
This example shows the connection to 32-bit memory using 2 IDT71V416S SRAM parts.

Table 34: Variables used in Defining Memory Subsystem

Variable Allowed Range Definition

BN 0 to 7 Memory bank number

DN 0 to 127 Memory device number within a bank. The memory
device attached to the most significant bit in the
memory subsystem is 0; device numbers increase
toward the least significant bit.

MW 8 to 128 Width in bits of memory subsystem

DW 1 to 128 Width in bits of data bus for memory device

MAW 1 to 32 Width in bits of address bus for memory device

AU 1 to 128 Width in bits of smallest addressable data word on the
memory device

AS ≥ 0 Address shift for address bus = log2(MW*AU/DW/8)

HAW 1 to 64 Width of host address bus (e.g. OPB or PLB) in bits

Table 35: Memory Controller to Memory Interconnect

Description EMC Signal (MSB:LSB) Memory Device Signal (MSB:LSB)

Data bus Mem_DQ(DN*DW:(DN+1)*DW-1) D(DW-1:0)

Address bus Mem_A(HAW-MAW-AS:HAW-AS-1) A(MAW-1:0)

Chip Enable, low-true MEM_CEN(BN) CEN

Output Enable, low-true MEM_OEN OEN

Write Enable, low-true MEM_WEN WEN (for devices that have byte enables or do
not require byte enables)

Byte-Enable-Qualified Write
Enable, low-true

MEM_QWEN(INT(DN*DW/8)) WEN (for devices that require byte enables
and do not have them)

Byte Enable, low-true MEM_BEN(INT(DN*DW/8):
INT((DN+1)*DW/8-1))

BEN(DW/8-1:0)

Table 36: Variables for Simple SRAM Example

Variable Value Definition

BN 0 Memory bank number

DN 0 to 1 Memory device number within a bank. The memory
device attached to the most significant bit in the
memory subsystem is 0; device numbers increase
toward the least significant bit.

MW 32 Width in bits of memory subsystem

DW 16 Width in bits of data bus for memory device
126 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB External Memory Controller (EMC)
R

Example 2
This example shows the connection to 2 banks of 64-bit memory using 4 IDT71V416S SRAM
parts per bank.

MAW 18 Width in bits of address bus for memory device

AU 16 Width in bits of smallest addressable data word on the
memory device

AS 2 Address shift for address bus = log2(MW*AU/DW/8)

HAW 32 Width of host address bus (e.g. OPB or PLB) in bits

Table 37: Connection to 32-bit Memory using 2 IDT71V416S Parts

DN Description EMC Signal (MSB:LSB)
Memory Device Signal

(MSB:LSB)

0 Data bus Mem_DQ(0:15) I/O(15:0)

Address bus Mem_A(12:29) A(17:0)

Chip Enable, low-true MEM_CEN(0) CS

Output Enable, low-true MEM_OEN OE

Write Enable, low-true MEM_WEN WE

Byte Enable, low-true MEM_BEN(0:1) BHE:BLE

1 Data bus Mem_DQ(16:31) I/O(15:0)

Address bus Mem_A(12:29) A(17:0)

Chip Enable, low-true MEM_CEN(0) CS

Output Enable, low-true MEM_OEN OE

Write Enable, low-true MEM_WEN WE

Byte Enable, low-true MEM_BEN(2:3) BHE:BLE

Table 38: Variables for Two Banks of SRAM

Variable Value Definition

BN 0 to 1 Memory bank number

DN 0 to 3 Memory device number within a bank. The memory
device attached to the most significant bit in the
memory subsystem is 0; device numbers increase
toward the least significant bit.

MW 64 Width in bits of memory subsystem

DW 16 Width in bits of data bus for memory device

MAW 18 Width in bits of address bus for memory device

Table 36: Variables for Simple SRAM Example (Continued)

Variable Value Definition
March 2002 www.xilinx.com 127
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB External Memory Controller (EMC)
R

AU 16 Width in bits of smallest addressable data word on the
memory device

AS 3 Address shift for address bus = log2(MW*AU/DW/8)

HAW 32 Width of host address bus (e.g. OPB or PLB) in bits

Table 39: Connection to 64-bit Memory using 8 IDT71V416S Parts

BN DN Description
EMC Signal
(MSB:LSB)

Memory Device Signal
(MSB:LSB)

0 0 Data bus Mem_DQ(0:15) I/O(15:0)

Address bus Mem_A(11:28) A(17:0)

Chip Enable, low-true MEM_CEN(0) CS

Output Enable, low-true MEM_OEN OE

Write Enable, low-true MEM_WEN WE

Byte Enable, low-true MEM_BEN(0:1) BHE:BLE

1 Data bus Mem_DQ(16:31) I/O(15:0)

Address bus Mem_A(11:28) A(17:0)

Chip Enable, low-true MEM_CEN(0) CS

Output Enable, low-true MEM_OEN OE

Write Enable, low-true MEM_WEN WE

Byte Enable, low-true MEM_BEN(2:3) BHE:BLE

2 Data bus Mem_DQ(32:47) I/O(15:0)

Address bus Mem_A(11:28) A(17:0)

Chip Enable, low-true MEM_CEN(0) CS

Output Enable, low-true MEM_OEN OE

Write Enable, low-true MEM_WEN WE

Byte Enable, low-true MEM_BEN(4:5) BHE:BLE

3 Data bus Mem_DQ(48:63) I/O(15:0)

Address bus Mem_A(11:28) A(17:0)

Chip Enable, low-true MEM_CEN(0) CS

Output Enable, low-true MEM_OEN OE

Write Enable, low-true MEM_WEN WE

Byte Enable, low-true MEM_BEN(6:7) BHE:BLE

Table 38: Variables for Two Banks of SRAM (Continued)

Variable Value Definition
128 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB External Memory Controller (EMC)
R

Connecting to Intel StrataFlash
Because StrataFlash parts contain an identifier register, a status register, and a command
interface, the bit label ordering is critical to proper functioning. The following tables show
examples of how to connect the big-endian EMC buses to the little-endian StrataFlash parts.
The proper connection ordering is also indicated in a more general form in Table 35.
StrataFlash parts have a x8 mode and a x16 mode, selectable with the BYTE# input pin. To
calculate the proper address shift, the minimum addressable word is 8 bits for both x8 and x16
mode, since A0 always selects a byte.

1 0 Data bus Mem_DQ(0:15) I/O(15:0)

Address bus Mem_A(11:28) A(17:0)

Chip Enable, low-true MEM_CEN(1) CS

Output Enable, low-true MEM_OEN OE

Write Enable, low-true MEM_WEN WE

Byte Enable, low-true MEM_BEN(0:1) BHE:BLE

1 Data bus Mem_DQ(16:31) I/O(15:0)

Address bus Mem_A(11:28) A(17:0)

Chip Enable, low-true MEM_CEN(1) CS

Output Enable, low-true MEM_OEN OE

Write Enable, low-true MEM_WEN WE

Byte Enable, low-true MEM_BEN(2:3) BHE:BLE

2 Data bus Mem_DQ(32:47) I/O(15:0)

Address bus Mem_A(11:28) A(17:0)

Chip Enable, low-true MEM_CEN(1) CS

Output Enable, low-true MEM_OEN OE

Write Enable, low-true MEM_WEN WE

Byte Enable, low-true MEM_BEN(4:5) BHE:BLE

3 Data bus Mem_DQ(48:63) I/O(15:0)

Address bus Mem_A(11:28) A(17:0)

Chip Enable, low-true MEM_CEN(1) CS

Output Enable, low-true MEM_OEN OE

Write Enable, low-true MEM_WEN WE

Byte Enable, low-true MEM_BEN(6:7) BHE:BLE

Table 39: Connection to 64-bit Memory using 8 IDT71V416S Parts (Continued)

BN DN Description
EMC Signal
(MSB:LSB)

Memory Device Signal
(MSB:LSB)
March 2002 www.xilinx.com 129
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB External Memory Controller (EMC)
R

Example 3
This example shows the connection to 32-bit memory using 2 StrataFlash parts in x16 mode
(supports byte read, but no byte write; smallest data type that can be written is 16-bit data)

Table 40: Variables for StrataFlash (x16 mode) Example

Variable Value Definition

BN 0 Memory bank number

DN 0 to 1 Memory device number within a bank. The memory
device attached to the most significant bit in the
memory subsystem is 0; device numbers increase
toward the least significant bit.

MW 32 Width in bits of memory subsystem

DW 16 Width in bits of data bus for memory device

MAW 24 Width in bits of address bus for memory device

AU 8 Width in bits of smallest addressable data word on the
memory device

AS 1 Address shift for address bus = log2(MW*AU/DW/8)

HAW 32 Width of host address bus (e.g. OPB or PLB) in bits

Table 41: Connection to 32-bit Memory using 2 StrataFlash Parts

DN Description EMC Signal (MSB:LSB)
StrataFlash Signal

(MSB:LSB)

0 Data bus Mem_DQ(0:15) DQ(15:0)

Address bus Mem_A(7:30) A(23:0)

Chip Enable, low-true GND,GND,MEM_CEN(0) CE(2:0)

Output Enable, low-true MEM_OEN OE#

Write Enable, low-true MEM_QWEN(0) WE#

Reset/Power down, low-true MEM_RPN RP#

Status, low-true MEM_STS(0) STS

Byte mode select, low-true N/A - tie to VCC BYTE#

Program enable, high-true N/A - tie to VCC VPEN

1 Data bus Mem_DQ(16:31) DQ(15:0)

Address bus Mem_A(7:30) A(23:0)

Chip Enable, low-true GND,GND,MEM_CEN(0) CE(2:0)

Output Enable, low-true MEM_OEN OE#

Write Enable, low-true MEM_QWEN(2) WE#

Reset/Power down, low-true MEM_RPN RP#

Status, low-true MEM_STS(0) STS

Byte mode select, low-true N/A - tie to VCC BYTE#

Program enable, high-true N/A - tie to VCC VPEN
130 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB External Memory Controller (EMC)
R

Example 4
This example shows the connection to 32-bit memory using 4 StrataFlash parts in x8 mode
(supports byte reads and writes):

Table 42: Variables for StrataFlash (x8 mode) Example

Variable Value Definition

BN 0 Memory bank number

DN 0 to 3 Memory device number within a bank. The memory
device attached to the most significant bit in the
memory subsystem is 0; device numbers increase
toward the least significant bit.

MW 32 Width in bits of memory subsystem

DW 8 Width in bits of data bus for memory device

MAW 24 Width in bits of address bus for memory device

AU 8 Width in bits of smallest addressable data word on the
memory device

AS 2 Address shift for address bus = log2(MW*AU/DW/8)

HAW 32 Width of host address bus (e.g. OPB or PLB) in bits

Table 43: Connection to 32-bit Memory using 4 StrataFlash Parts

DN Description EMC Signal (MSB:LSB)
StrataFlash Signal

(MSB:LSB)

0 Data bus Mem_DQ(0:7) DQ(7:0)(1)

Address bus Mem_A(8:29) A(23:0)

Chip Enable, low-true GND,GND,MEM_CEN(0) CE(2:0)

Output Enable, low-true MEM_OEN OE#

Write Enable, low-true MEM_QWEN(0) WE#

Reset/Power down, low-true MEM_RPN RP#

Status, low-true MEM_STS(0) STS

Byte mode select, low-true N/A - tie to GND BYTE#

Program enable, high-true N/A - tie to VCC VPEN

1 Data bus Mem_DQ(8:15) DQ(7:0)(1)

Address bus Mem_A(8:29) A(23:0)

Chip Enable, low-true GND,GND,MEM_CEN(0) CE(2:0)

Output Enable, low-true MEM_OEN OE#

Write Enable, low-true MEM_QWEN(1) WE#

Reset/Power down, low-true MEM_RPN RP#

Status, low-true MEM_STS(0) STS

Byte mode select, low-true N/A - tie to GND BYTE#

Program enable, high-true N/A - tie to VCC VPEN
March 2002 www.xilinx.com 131
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB External Memory Controller (EMC)
R

2 Data bus Mem_DQ(16:23) DQ(7:0)(1)

Address bus Mem_A(8:29) A(23:0)

Chip Enable, low-true GND,GND,MEM_CEN(0) CE(2:0)

Output Enable, low-true MEM_OEN OE#

Write Enable, low-true MEM_QWEN(2) WE#

Reset/Power down, low-true MEM_RPN RP#

Status, low-true MEM_STS(0) STS

Byte mode select, low-true N/A - tie to GND BYTE#

Program enable, high-true N/A - tie to VCC VPEN

3 Data bus Mem_DQ(24:31) DQ(7:0)(1)

Address bus Mem_A(8:29) A(23:0)

Chip Enable, low-true GND,GND,MEM_CEN(0) CE(2:0)

Output Enable, low-true MEM_OEN OE#

Write Enable, low-true MEM_QWEN(3) WE#

Reset/Power down, low-true MEM_RPN RP#

Status, low-true MEM_STS(0) STS

Byte mode select, low-true N/A - tie to GND BYTE#

Program enable, high-true N/A - tie to VCC VPEN

Notes:
1. In x8 configuration, DQ(15:8) are not used and should be treated according to manufacturer’s data

sheet.

Table 43: Connection to 32-bit Memory using 4 StrataFlash Parts

DN Description EMC Signal (MSB:LSB)
StrataFlash Signal

(MSB:LSB)
132 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Summary This document describes the specifications for a ZBT controller core for the On-chip Peripheral
Bus (OPB). This document applies to the following peripherals:

Overview The ZBT Memory Controller is a 32-bit peripheral that attaches to the OPB (On-chip Peripheral
Bus) and has the following features:

Features
• OPB V2.0 bus interface with byte-enable support

• Supports 32-bit bus interfaces

• Supports memory width of 32-bits

Operation The OPB ZBT Controller provides an interface between the OPB and external ZBT memories.
The controller supports OPB data bus widths of 32bits, and memory subsystem widths of 32
bits. This controller supports the OPB V2.0 byte enable architecture.

OPB ZBT
Controller
Parameters

To allow you to obtain an ZBT Controller that is uniquely tailored for your system, certain
features can be parameterized in the ZBT Controller design. This allows your to configure a
design that only utilizes the resources required by your system, and operates with the best
possible performance. The features that can be parameterized in the Xilinx ZBT Controller
design are shown in Table 1.

Xilinx Embedded Processors: OPB Peripherals

March 2002

OPB ZBT Controller Design Specification
R

opb_zbt_controller v1.00a

Table 1: ZBT Controller Parameters

Feature/Description Parameter Name Allowable Values
Default
Value VHDL Type

ZBT Memory Base Address C_BASEADDR Valid Address
Range(2)

None(1) std_logic_vector

ZBT Memory Address Width C_ZBT_ADDR_SIZE 2-31 17 integer

Implement ZBT Clock
synchronization

C_EXTERNAL_DLL 0 = Do implement
1 = Do not implement

0 integer

Notes:
1. Address range specified by C_BASEADDR must be a power of 2
2. No default value is specified for C_BASEADDR to insure that the actual value is set; if the value is not set, a compiler error is

generated. These generics must be a power of 2.
March 2002 www.xilinx.com 133
MicroBlaze Hardware Reference Guide 1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

OPB ZBT Controller Design Specification
R

ZBT Controller
I/O Signals

The I/O signals for the ZBT Controller are listed in Table 2.

Table 2: ZBT COntroller I/O Signals

Signal Name Interface I/O Description

OPB_Clk OPB I OPB Clock

OPB_Rst OPB I OPB Reset

OPB_ABus(0:31) OPB I OPB Address Bus

OPB_BE(0:3) OPB I OPB Byte Enables

OPB_DBus(0:31) OPB I OPB Data Bus

OPB_RNW OPB I OPB Read, Not Write

OPB_select OPB I OPB Select

OPB_seqAddr OPB I OPB Sequential Address

ZBT_DBus(0:31zbt) OPB O ZBT Controller Data Bus

ZBT_errAck OPB O ZBT Controller Error Acknowledge

ZBT_retry OPB O ZBT Controller Retry

ZBT_toutSup OPB O ZBT Controller Timeout Suppress

ZBT_xferAck OPB O ZBT Controller Transfer Acknowledge

ZBT_Clk_FB IP Core I Feedback ZBT Clock for clock synchronization

ZBT_Clk_FBOut IP Core O Feedback ZBT Clock for clock synchronization

ZBT_Clk IP Core O ZBT Memory clock

ZBT_CKE_N IP Core O ZBT Memory clock enable

ZBT_OE_N IP Core O ZBT Memory output enable

ZBT_ADV_LD_N IP Core O ZBT Memory Control signal

ZBT_LBO_N IP Core O ZBT Memory Control signal

ZBT_CE1_N IP Core O ZBT Memory Select signal

ZBT_CE2_N IP Core O ZBT Memory Select signal

ZBT_CE2 IP Core O ZBT Memory Select signal

ZBT_RW_N IP Core O ZBT Memory Read/Write signal

ZBT_A(0:C_ZBT_ADDR_SIZE-1) IP Core O ZBT Memory Address

ZBT_BW_N(0:3) IP Core O ZBT Memory Byte Enable

ZBT_IO_I(0:31) IP Core I ZBT Memory Input Data Bus

ZBT_IO_O(0:31) IP Core O ZBT Memory Output Data Bus

ZBT_IO_T IP Core O ZBT Memory Output 3-state Signal

ZBT_IOP_I(1:4) IP Core I ZBT Memory Input Parity Data Bus

ZBT_IOP_O(1:4) IP Core O ZBT Memory Output Parity Data Bus

ZBT_IOP_T IP Core O ZBT Memory Output Parity 3-state Signal
134 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB ZBT Controller Design Specification
R

Connecting to
Memory

The following table shows how to connect a ZBT controller and SAMSUNG K7N163601M-
OC15 (512kword x 32). The ZBT controller does not support sleep mode, burst mode, parity
checking, or parity generating.

Address
Mapping

The generic C_ZBT_ADDR_SIZE specifies the number of address signals to the ZBT memory.
Since all accesses are word, the generic specifies the number of address bits for word
accesses. For example, 512 KWord memory needs 19 address bits (2^19 = 512288). The
address decoding uses OPB_A(0 to 29-C_ZBT_ADDR_SIZE) and the generic C_BASEADDR
to determine if the OPB access is to the ZBT memory.

Table 3: Signal Connection

ZBT Controller
 SAMSUNG

K7N163601M-OC15

ZBT_A(0:19) A(0:19)

ZBT_Clk CLK

ZBT_CKE_N CKE

ZBT_RW_N WE

ZBT_ADV_LD_N ADV

ZBT_OE_N OE

ZBT_CE1_N CS1

ZBT_IO(24:31) DQA(0:7)

ZBT_IO(16:23) DQB(0:7)

ZBT_IO(8:15) DQC(0:7)

ZBT_IO(0:7) DQD(0:7)

ZBT_BW_N(4) BWA

ZBT_BW_N(2) BWB

ZBT_BW_N(1) BWC

ZBT_BW_N(0) BWD

(Need to be tied to VCC) CS2

(Need to be tied to GND) CS2

(Need to be tied to GND) ZZ

(Need to be tied to GND) LBO
March 2002 www.xilinx.com 135
MicroBlaze Hardware Reference Guide 1-800-255-7778

1

OPB ZBT Controller Design Specification
R

Timing
Diagrams

A read uses five OPB clock cycles to complete, and a write uses 2 OPB clock cycles. The write
is faster because pipelining is used for the ZBT controller and the ZBT memories. Figure 1
shows a simple read access. Figure 2 shows two successive writes to illustrate the write
pipelining.

Figure 1: Read Cycle

Figure 2: Write Cycle

OPB_Clk

OPB_ABus

1 2 4 5 6

Address

OPB_RNW

OPB_DBus Data

OPB_XferAck

Address

Data

3

ZBT_A

ZBT_RW_N

ZBT_CE

ZBT_IO

OPB_Clk

OPB_ABus

1 2 4 5 6

Address1

OPB_RNW

OPB_DBus Data1

OPB_XferAck

Address1

Data1

3

ZBT_A

ZBT_RW_N

ZBT_CE

ZBT_IO

Address2

Data2

Address2

Data2
36 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB ZBT Controller Design Specification
R

Clock Handling
Since ZBT memories are clocked and all timing on signals to the memories is referencing the
ZBT clock, careful handling of the clock is important. Since all signals to the ZBT are driven
from the OPB_Clk, the ZBT clock must be synchronized to the OPB_Clk. You can do this with
a DLL, as shown in Figure 3

The controller has a generic C_EXTERNAL_DLL that specifies if the peripheral implements the
DLL. If there is more than one ZBT controller in a design, the number of DLLs can exceed the
number of available DLLs. Consequently, a more centralized handling of the clocks is required.
In this case, one DLL synchronizes all ZBT clocks and each of the controllers must inhibit the
implementing of the DLL (C_EXTERNAL_DLL = 1). This centralized DLL drives all ZBT clocks,
and requires that the loads on each of the ZBT clocks is equal.

Figure 3: Clock Synchronization

DLL

ZBT MEMORYclkin

clkfb

OPB_Clk

clk0 ZBT_Clk

ZBT_Clk_fbout

Load1

Load2

C_EXTERNAL_DLL = 0

ZBT_Clk_fb

Load1 =~ Load2
March 2002 www.xilinx.com 137
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB ZBT Controller Design Specification
R

Programming
Model

Register Data Types and Organization
The ZBT controller is organized as big-endian data. The bit and byte labeling for the big-endian
data types is shown in Figure 4.

Implementation Design Tips
To achieve the highest fmax on the ZBT controller, the Xilinx implementation tools must force
flip-flops to the IO pads. This option is turned off by default.

Figure 4: Big-Endian Data Types

n n+1 n+2 n+3

0 1 2 3

MSByte LSByte

0 31

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n n+1

0 1

MSByte LSByte

0 15

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n

0

MSByte

0 7

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

Byte

Halfword

Word
138 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Summary This document describes the specifications for an OPB BRAM core for the MicroBlaze soft
processor and other embedded processors. This document applies to the following
peripherals:

Overview The OPB BRAM is a module that attaches to the OPB (On-chip Peripheral Bus), and has the
following features:

Features
• OPB V2.0 bus interface with byte-enable support

• Number of BRAMs is configurable

• Handles byte, half-word and word transfers

• Other port of the BRAM is available for customer designs

• Handles Virtex, Virtex-E, Spartan-II, Virtex-II and Virtex-II PRO type of BRAM

OPB_BRAM
Parameters

To allow you to obtain an OPB_BRAM that is uniquely tailored for your system, certain features
can be parameterized in the OPB_BRAM design. This allows you to configure a design that
only utilizes the resources required by your system, and operates with the best possible
performance. The features that can be parameterized in Xilinx OPB_BRAM designs are shown
in Table 1.

Xilinx Embedded Processors: OPB Peripherals

March 2002

OPB Block RAM (BRAM) Specification
R

opb_bram v1.00a

Table 1: OPB_BRAM Parameters

Feature/Description Parameter Name Allowable Values
Default
Value VHDL Type

OPB_BRAM Registers
Base Address

C_BASEADDR Valid Address
Range(2)

None(1) std_logic_vector

OPB_BRAM Registers
HIGH Address

C_HIGHADDR Valid Address
Range(2)

None(1) std_logic_vector

Target Family C_FAMILY Xilinx FPGA families virtex2 strings

OPB Data Bus Width C_OPB_DWIDTH 32 32 integer

OPBAddress Bus Width C_OPB_AWIDTH 8 - 32 32 integer

Notes:
1. Address range specified by C_BASEADDR and C_HIGHADDR must be a power of 2
2. No default value is specified for C_BASEADDR and C_HIGHADDR to insure that the actual value is set; if the value is not set, a

compiler error is generated. These generics must be a power of 2.
March 2002 www.xilinx.com 139
MicroBlaze Hardware Reference Guide 1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

OPB Block RAM (BRAM) Specification
R

OPB_BRAM I/O
Signals

The I/O signals for the OPB_BRAM are listed in Table 2.

Programming
Model

Supported Memory Sizes
The following sizes are supported for Virtex, Virtex-E, and Spartan-II:

• 4 BRAMs => 2 Kbyte

• 8 BRAMs => 4 Kbyte

• 16 BRAMs => 8 Kbyte

• 32 BRAMs => 16 Kbyte

The following sizes are supported for Virtex-II and Virtex-II PRO:

• 4 BRAMs => 8 Kbyte

• 8 BRAMs => 16 Kbyte

• 16 BRAMs => 32 Kbyte

• 32 BRAMs => 64 Kbyte

Table 2: OPB_BRAM I/O Signals

Signal Name Interface I/O Description

OPB_Clk OPB I OPB Clock

OPB_Rst OPB I OPB Reset

OPB_ABus[0:C_OPB_AWIDTH-1] OPB I OPB Address Bus

OPB_BE[0:C_OPB_DWIDTH/8-1] OPB I OPB Byte Enables

OPB_DBus[0:C_OPB_DWIDTH-1] OPB I OPB Data Bus

OPB_RNW OPB I OPB Read, Not Write

OPB_select OPB I OPB Select

OPB_seqAddr OPB I OPB Sequential Address

OPB_BRAM_DBus[0:C_OPB_DWIDTH-1] OPB O OPB_BRAM Data Bus

OPB_BRAM_errAck OPB O OPB_BRAM Error Acknowledge

OPB_BRAM_retry OPB O OPB_BRAM Retry

OPB_BRAM_toutSup OPB O OPB_BRAM Timeout Suppress

OPB_BRAM_xferAck OPB O OPB_BRAM Transfer Acknowledge

BRAM_Clk Other
Port

I Other Port Clock

BRAM_Addr[0:31] Other
Port

I Other Port Address Bus

BRAM_We[0:3] Other
Port

I Other Port Byte Enables

BRAM_Write_Data[0:31] Other
Port

I Other Port Write Data Bus

BRAM_Read_Data[0:31] Other
Port

O Other Port Read Data Bus
140 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Block RAM (BRAM) Specification
R

Register Data Types and Organization
The BRAMs are organized as big-endian data. The bit and byte labeling for the big-endian data
types is shown in Figure 1.

Figure 1: Big-Endian Data Types

n n+1 n+2 n+3

0 1 2 3

MSByte LSByte

0 31

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n n+1

0 1

MSByte LSByte

0 15

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n

0

MSByte

0 7

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

Byte

Halfword

Word
March 2002 www.xilinx.com 141
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Block RAM (BRAM) Specification
R

142 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Summary This document describes the specifications for a UART core for the On-chip Peripheral Bus
(OPB). This document applies to the following peripherals:

Overview The UART Lite is a module that attaches to the OPB (On-chip Peripheral Bus) and has the
following features:

Features
• OPB V2.0 bus interface with byte-enable support

• Supports 8-bit bus interfaces

• One transmit and one receive channel (full duplex)

• 16-character transmit FIFO and 16-character receive FIFO

• Number of databits in a character is configurable (5-8)

• Parity; can be configured for odd or even

• Configurable baud rate

UART Lite
Parameters

To allow you to obtain a UART Lite that is uniquely tailored for your system, certain features
can be parameterized in a UART Lite design. This allows you to configure a design that only
utilizes the resources required by your system, and operates with the best possible
performance. The features that can be parameterized in the Xilinx UART Lite design are shown
in Table 1.

Xilinx Embedded Processors: OPB Peripherals

March 2002

OPB UART Lite Specification
R

opb_uartlite v1.00a

Table 1: UART Lite Parameters

Feature/Description Parameter Name Allowable Values
Default
Value VHDL Type

UART Lite Registers Base
Address

C_BASEADDR Valid Address Range(2) None(1) std_logic_vector

UART Lite Registers High
Address

C_HIGHADDR Valid Address Range(2) None(1) std_logic_vector

Target Family C_FAMILY Xilinx FPGA families virtex2 strings

OPB Bus Width C_OPB_AWIDTH 32 32 integer

OPB Data Bus Width C_OPB_DWIDTH 32 32 integer

C_CLK_FREQ Clock frequency of the OPB system clock
driving the UART Lite peripheral in Hz.

integer (ex. 125000000) 125_000_00
0

integer

C_BAUDRATE Baud rate of the UART Lite in bits per
second.

integer (ex. 9600) 19_200 integer
March 2002 www.xilinx.com 143
MicroBlaze Hardware Reference Guide 1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

OPB UART Lite Specification
R

UART Lite I/O
Signals

The I/O signals for the UART Lite are listed in Table 2.

JTAG_UART
Address Map
and Register
Descriptions

Register Data Types and Organization
Registers in the UART Lite are accessed as one of three types: byte (8 bits), halfword (2 bytes),
and word (4 bytes). All register accesses are on word boundaries to conform to the OPB-IPIF
register location convention. The addresses of the UART Lite registers are provided in the
Address Map section.

C_DATA_BITS The number of data bits in the serial frame. integer (5 to 8) 8 integer

C_USE_PARITY Determines whether parity is used or not. Integer
1 = use parity,
0 = do not use parity.

1 integer

C_ODD_PARITY If parity is used, determines whether parity
is odd or even

integer
1= odd parity,
0 = even parity.

1 integer

Table 1: UART Lite Parameters

Feature/Description Parameter Name Allowable Values
Default
Value VHDL Type

Table 2: UART Lite I/O Signals

Signal Name Interface I/O Description

OPB_Clk OPB I OPB Clock

OPB_Rst OPB I OPB Reset

OPB_ABus[0:31] OPB I OPB Address Bus

OPB_BE[0:3] OPB I OPB Byte Enables

OPB_DBus[0:31] OPB I OPB Data Bus

OPB_RNW OPB I OPB Read, Not Write

OPB_select OPB I OPB Select

OPB_seqAddr OPB I OPB Sequential Address

UART_DBus[0:31] OPB O UART Data Bus

UART_errAck OPB O UART Error Acknowledge

UART_retry OPB O UART Retry

UART_toutSup OPB O UART Timeout Suppress

UART_xferAck OPB O UART Transfer Acknowledge

Interrupt Interrupt O UART Interrupt

RX External I Receive Data

TX External O Transmit Data
144 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB UART Lite Specification
R

The UART Lite registers are organized as big-endian data. The bit and byte labeling for the big-
endian data types is shown in Figure 1.

Registers of the UART Lite
Information on the following registers used in assembly language programming are described
in this section.

Figure 1: Big-Endian Data Types

Figure 2: UART Lite Register Set

n n+1 n+2 n+3

0 1 2 3

MSByte LSByte

0 31

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n n+1

0 1

MSByte LSByte

0 15

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n

0

MSByte

0 7

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

Byte

Halfword

Word

Receive FIFO

Transmit FIFO

Status

Control

Read character from Receive FIFO

Write character into Transmit FIFO

Read from Status Register

Write to Control Register
March 2002 www.xilinx.com 145
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB UART Lite Specification
R

Status Register (STATREG)

The Status register contains the status of the receive and transmit FIFO, if interrupts are
enabled, and if there are any errors.

Table 3: Status Register

Bits Name Description Reset Value

0-23 Reserved Not used 0

24 PAR_ERROR Parity Error

Indicates that a parity error has occurred
since the last time the status register was
read. If the UART is configured without any
parity handling, this bit will always be ’0’.

The received character will be written into
the receive FIFO.

The bit will be cleared when the status
register is read

0 No parity error has occurred
1 A parity error has occurred

0

25 FRAME_ERROR Frame Error

Indicates that a frame error has occurred
since the last time the status register was
read.

Frame Error is defined as detection of a
stop bit with the value ’0’.

The receive character will be ignored and
NOT written to the receive FIFO.

The bit will be cleared when the status
register is read

0 No Frame error has occurred
1 A frame error has occurred

0

26 OVERUN_ERROR Overrun Error

Indicates that a overrun error has occurred
since the last time the status register was
read.

Overrun is when a new character has been
received but the receive fifo is full. The
received character will be ignored and NOT
written into the receive FIFO. The bit will be
cleared when the status register is read

0 No interrupt has occurred
1 Interrupt has occurred

0

27 INTR_ENABLED Interrupts is enabled

Indicates that interrupts is enabled

0 Interrupt is disabled
1 Interrupt is enabled

0

146 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB UART Lite Specification
R

28 TX_FIFO_FULL Transmit FIFO is full

Indicates if the transmit FIFO is full.

0 Transmit FIFO is not full
1 Transmit FIFO is full

29 TX_FIFO_EMPTY Transmit FIFO is empty

Indicates if the transmit FIFO is empty.

0 Transmit FIFO is not empty
1 Transmit FIFO is empty

30 RX_FIFO_FULL Receive FIFO is full

Indicates if the receive FIFO is full.

0 Receive FIFO is not full
1 Receive FIFO is full

31 RX_FIFO_VALID_DATA Receive FIFO is has valid data

Indicates if the receive FIFO has valid data.

0 Receive FIFO is empty
1 Receive FIFO has valid data

Table 3: Status Register (Continued)

Bits Name Description Reset Value
March 2002 www.xilinx.com 147
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB UART Lite Specification
R

Control Register (CTRL_REG)

The Control register contains the UART Lite control.

Address Map
UART_BASE_ADDRESS + 0: Read from Receive FIFO

UART_BASE_ADDRESS + 4: Write to transmit FIFO

UART_BASE_ADDRESS + 8: Read from Status Register

UART_BASE_ADDRESS + 12: Write to Control Register

Interrupts
If interrupts are enabled, an interrupt is generated when one of the following conditions is true:

1. When there exists any valid character in the receive FIFO, the interrupt stays active until the
receive FIFO is empty.

2. When the transmit FIFO goes from not empty to empty, such as when the last character in
the transmit FIFO is transmitted, the interrupt is only active one clock cycle.

Table 4: Control Register (CTRL_REG)

Bits Name Description Reset Value

0-26 Reserved Not used 0

27 ENABLE_INTR Enable Interrupt for the UART

0 Disable interrupt signal
1 Enable interrupt signal

0

28-29 Reserved Not used 0

30 RST_RX_FIFO Reset/Clear the receive FIFO

When written to with a ’1’ the receive
FIFO is cleared.

0 Do nothing

1 Clear the receive FIFO

0

31 RST_TX_FIFO Reset/Clear the transmit FIFO

When written to with a ’1’ the transmit
FIFO is cleared.

0 Do nothing

1 Clear the transmit FIFO

0

148 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB UART Lite Specification
R

Design
Implementation

Device Utilization and Performance Benchmarks
The following table shows approximate resource utilization and performance benchmarks for
the OPB UART Lite. The estimates shown are not guaranteed and can vary with FPGA family
and speed grade, implementation parameters, user timing constraints, and implementation tool
version. Only parameters that affect resource utilization are shown in the following table.

Table 5: OPB UART Lite Performance and Resource Utilization Benchmarks (Virtex-II
2V1000-5)

Parameter Values Device
Resources

fMAX
(MHz)

Address
Bits in

Decode

C_AW
IDTH

C_CLK_
FREQ

C_BAUD
RATE

C_DAT
A_BITS

C_USE_
PARITY

C_ODD_
PARITY

Flip-
Flops

4-input
LUTs

fMAX

24 32 100_000
_000

19_200 5 FALSE FALSE 48 88

24 32 100_000
_000

19_200 6 FALSE FALSE 49 92

24 32 100_000
_000

19_200 7 FALSE FALSE 50 95

24 32 100_000
_000

19_200 8 FALSE FALSE 51 100

24 32 40_000_
000

38_400 8 FALSE FALSE 49 97 158

24 32 100_000
_000

19_200 6 TRUE FALSE 57 108 137

24 32 100_000
_000

19_200 7 TRUE FALSE 57 108 137
March 2002 www.xilinx.com 149
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB UART Lite Specification
R

150 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Summary This document presents specifications for the VHDL implementation of Motorola’s Serial
Peripheral Interface (SPI) in a Xilinx FPGA. The original specifications closely followed
Motorola’s M68HC11-Rev. 4.0 Reference Manual, and this document emphasizes the M68HC-
11 specifications. However, the design was enhanced with a number of exceptions and
enhancements as described in this document. The default mode of operation has been
changed to a manual slave select operation (not included in the M68HC11 specification). This
document applies to the following peripherals:

Introduction The Serial Peripheral Interface (SPI) is a full-duplex, synchronous channel that supports a four-
wire interface (receive, transmit, clock and slave select) between one master and one slave.
The original specifications followed closely Motorola’s M68HC11-Rev. 4.0 Reference Manual.
There are difference from the 68HC11 specification that should be reviewed when utilizing this
SPI Assembly, see Specification Exceptions.

The Version B specification has extended functionality, including a manual slave select mode.
This mode allows you to manually control the slave select line directly by the data written to the
slave select register. This allows transfers of an arbitrary number of bytes without toggling the
slave select line until all bytes are transferred. In this mode, you must toggle the slave select by
writing the appropriate data to the slave select register. The manual slave select mode is the
default mode of operation.

This parameterized module permits additional slaves with automatic generation of the required
decoding of the individual slave select outputs by the master. Additional masters can be added
as well; however, means to detect all possible conflicts are not implemented with this interface
standard, but rather require the software to arbitrate bus control in order to eliminate conflicts.
At this time only SPI slave devices are allowed off-chip. This is an artifact of software master
control arbitration which can not be guaranteed if off-chip masters were allowed and is due to
issues with asynchronous external clocks as well. Essentially any number of internal slave and
master SPI devices is allowed. The actual number is limited by the performance that is desired.

NOTICE
XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS". BY PROVIDING THIS
DESIGN, CODE, OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS
IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE
RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION.
XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE
ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT,
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property Specification: OPB Peripherals

March 2002

OPB Serial Peripheral Interface (SPI)
Design Specification

R

opb_spi v1.00b
March 2002 www.xilinx.com 151
MicroBlaze Hardware Reference Guide 1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

OPB Serial Peripheral Interface (SPI) Design Specification
R

SPI Device Features
• Four signal interface (MOSI, MISO, SCK, and SS)-- SS bit for each slave on the SPI bus

• Three signal in/out (in, out, 3-state) for implementing 3-state SPI device in/outs to support
multi-master configuration within the FPGA

• Full-duplex operation

• Works with N times 8-bit data characters in default configuration. The default mode
implements manual control of the SS output via data written to the slave select register
which appears directly on the SS output when the master is enabled. This mode can be
used only with external slave devices. In addition, an optional operation where the SS
output is toggled automatically with each 8-bit character transfer by the master device
internal state machine can be selected via a bit in the command register for SPI master
devices.

• Supports back-to-back character transmission and reception

• Master and slave SPI modes supported

• Multi-master environment supported (implemented with 3-state drivers and requires
software arbitration for possible conflict)

• Multi-slave environment supported (automatic generation of additional master slave select
signals)

• Continuous transfer mode for automatic scanning of a peripheral

• Supports maximum clock rates of up to one-half the OPB clock rate in both master and
slave modes when both SPI devices are in the same FPGA part (routing constraints of SPI
bus signals must be incorporated in map/par process). In anticipation of remote master
operation, slaves operation supports one-fourth the OPB clock rate (artifact of
asynchronous SCK clock relative to the OPB clock which requires clock synchronization).

• Parameterizable baud rate generator

• Programmable clock phase and polarity

• External ports (selected via a parameter) for off-chip slave interconnects (off-chip masters
not supported)

• Optional transmit and receive FIFOs (implemented as a pair only)

• Local loopback capability for testing

The Xilinx SPI design allows you to tailor the SPI Assembly to suit your application by setting
certain parameters to enable or disable features. The parameterizable features of the design
are discussed in the SPI Configuration Parameters section.

The basic SPI device consists of a register module and the SPI module. Optional FIFOs and
support are discussed in a later section. The register block includes all memory mapped
registers (as shown in Figure 1) and resides on the Xilinx OPB. As shown in Figure 3, the SPI
module consists of transmitter and receiver sections, a parameterized baud rate generator
(BRG) and a control unit. The registers are an 8-bit status register, an 8-bit control register, an
N-bit slave select register and a pair of 8-bit transmit/receiver registers. In the 68HC11
implementation, the transmit register is transparent to the shift register and the receive register
is double buffered with the shift register. In this implementation without FIFOs, both the transmit
and receive register are double buffered. Hardware prevents data transfer from the transmit
buffer to the shift register while an SPI transfer is in progress, consequently, the write collision
error described in the MC68HC11 Reference Manual can not occur and the WCOL flag is not
supported. All registers are accessed directly from the Xilinx OPB which is a subset of IBM’s
64-bit OPB utilizing byte enables (see IBM’s 64-Bit On-Chip Peripheral Bus document for
details). As shown in Figure 1, optional FIFOs can be implemented on both receive and
transmit paths.
152 www.xilinx.com v1.00b
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Serial Peripheral Interface (SPI) Design Specification
R

SPI Protocol with Automatic Slave Select Assertion
This section describes the SPI protocol where Slave Select (SS(N)) is asserted automatically
by the SPI Master device (i.e CR(24) = 0). This is not the default configuration, but was the only
mode of operation in the first specification of this device. This operation follows closely the
specification in Motorola 68HC11 Reference Manual. For more details and timing diagrams,
please refer to the description of the SPI bus in the Motorola 68HC11 Reference Manual.

The SPI bus to a given slave device (N-th device) consists of four wires, Serial Clock (SCK),
Master Out Slave In (MOSI), Master In Slave Out (MISO), and Slave Select (SS(N)), SCK,
MOSI, and MISO are shared signals for all slaves and masters. Each master SPI device has
the functionality to generates an active-low, one-hot encoded SS(N) vector where each bit is
assigned as a SS-signal to each slave SPI device. It is possible for SPI Master/Slave devices
to be both internal to the FPGA and SPI Slave devices to be external to the FPGA package;
when external slave devices are to be on the SPI bus, SPI pins are automatically instantiated.
This option is chosen via Platform Generator. Multiple SPI Master/Slave devices are
diagrammed in Figure 2. When a SPI device is slave-only, then the slave select register and
multiple SS(N) outputs are not included in that device implementation. Slave-only option is
selected via Platform Generator.

Figure 1: SPI Assembly Top-level Block Diagram

Register

Tx FIFO

Rc FIFO

SPI Module

MISO

SCK

OPB

System

SS(N)

MOSI

Module

Slave Sel. Reg

Control Reg

Receive Reg

Transmit Reg

Status Reg

BRG

P
in

s
In

te
rf

ac
e

S
h

if
t

R
eg

is
te

r

Control Unit

SPI
Ports

Interrupt Regs

(DTR)

(DRR)

SPISEL
v1.00b www.xilinx.com 153
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Serial Peripheral Interface (SPI) Design Specification
R

The SCK signal is driven by the SPI Master controlling the bus and regulates the flow of data.
The master must be configured at the time of system configuring to transmit data at a one of
four baud rates. The 68HC11 SPI specification prescribes baud rate selection via bits in the
control register; however, in this FPGA implementation, the baud rate is selected via a
parameter that fixes the baud rate at the time of system configuration. The FPGA permits
reconfiguration by resetting the parameters and rebuilding the system. This approach was
adopted to reduce FPGA resource requirements.

One bit of data is transferred per SCK clock period. Data is shifted on one edge of SCK and is
sampled on the opposite edge when the data is stable. Consistent with the 68HC11 SPI
specification, selection of clock polarity and a choice of two fundamentally different clocking
protocols on an 8-bit oriented data transfer is possible via bits in the control register.

Figure 2: Multi-master Configuration Block Diagram. Slave only devices, which are not shown, have only SPISEL
local slave select port and do not have SS(N) remote slave select port.

MOSI
SPI Device 0

MISO
SCK

SPISEL
SS(1)
SS(2)
SS(3)

S
S

(0
)

S
S

(1
)

S
S

(2
)

S
S

(3
)

MOSI
SPI Device 1

MISO
SCK

SS(0)
SS(2)
SS(3)

MOSI
SPI Device 2

MISO
SCK

SS(0)
SS(1)
SS(3)

MOSI
SPI Device 3

MISO
SCK

SS(0)
SS(1)
SS(2)

SPISEL

SPISEL

SPISEL
154 www.xilinx.com v1.00b
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Serial Peripheral Interface (SPI) Design Specification
R

The clock phase and polarity (or idle state) can be modified for SPI data transfers with
programmable bits in the control register. The clock polarity (CPOL) bit selects an active high
(i.e. idles low) or active low clock (i.e. idle high). The clock phase (CPHA) bit can be set to
select one of two fundamentally different transfer formats. If CPHA = ’0’, data is valid on the first
SCK edge (rising or falling) after SS(N) has been asserted. If CPHA = ’1’, data is valid on the
second SCK edge (rising or falling) after SS(N) has asserted. Determination of whether the
edge of interest is rising or falling edge depends on the idle state (i.e. CPOL setting). The clock
phase and polarity must be identical for the master SPI device and the selected slave device.
Figure 3 and Figure 4 shows four possible clock behaviors and these diagrams are discussed
in more detail below.

Both the MOSI and MISO port behaviors are different depending on the whether the SPI device
is configured as a master or a slave. When configured as a master, the MOSI port is a serial
data output port and the MISO is a serial data input port. The opposite is true when the device
is configured as a slave; the MISO port is a slave serial data output port and the MOSI is a
serial data input port. There may be only one master and one slave transmitting data at any
given time. The bus architecture provides limited contention error detection (i.e. multiple
devices driving the shared MISO and MOSI signals) and requires the software to provide
arbitration to prevent most possible contention errors.

All SCK, MOSI, and MISO pins of all devices are respectively hardwired together. For all
transactions, a single SPI device is configured as a master and all other SPI devices on the SPI
bus are configured as slaves. The single master drives the SCK and MOSI pins to the SCK and
MOSI pins of the slaves. The uniquely selected slave device drives data out its MISO pin to the
MISO master pin to realize full-duplex communication.

The Nth bit of the SS(N) signal selects the Nth SPI slave with an active-low signal. All other
slave devices ignore both SCK and MOSI signals. In addition, the non-selected slaves (i.e. SS
pin high) maintain their MISO pin so as to not interfere with SPI bus activities.

When external slave SPI devices are implemented, SCK, MOSI, and MISO, as well as the
needed SS(N) signals, are brought out to pins. All signals are true 3-state bus signals and
erroneous external bus activity can corrupt internal transfers when both internal and external
devices are present. You must insure that external pull-up or pull-down of external SPI 3-state
signals are consistent with the sink/source capability of the FPGA IO drivers. Recall that the IO
drivers can configured for different drive strengths as well as integral pull-ups. The 3-state
signals for multiple external slaves can be implemented however the system designer desires,
but the external bus must follow the SPI 68HC11 specifications.

Figure 3 shows the timing diagram for an SPI data transfer when the clock phase, CPHA, is set
to ’0’. The waveforms are shown for both positive and negative clock polarities of SCK (i.e.
CPOL = 1 and = 0). Recall the with CPHA=1, data is valid on the first clock edge (rising or
falling depending on CPOL). Therefore, SCK signal remains in the idle state until one-half
period following assertion of the slave select line which denotes the start of a transaction. Since
assertion of the SS(N) line denotes the start of a transfer, it must be de-asserted and
reasserted for sequential byte transfers to the same slave device.
v1.00b www.xilinx.com 155
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Serial Peripheral Interface (SPI) Design Specification
R

Figure 4 shows the timing diagram for an SPI transfer when the clock phase, CPHA, is set to
’1’. Waveforms are shown for both positive and negative clock polarities of SCK. The first SCK
cycle begins with a transition of SCK-signal from its idle state and this denotes the start of the
data transfer. Because the clock transition from idle denotes the start of a transfer, the 68HC11
spec notes that SS(N) line may remain active low between successive transfers. The spec text
goes on to state that this format is useful in systems with a single master and single slave. In
the context of the 68HC11spec, transmit data is placed directly in the shift register upon a write
to the transmit register. Hence, it is the user’s responsibility to insure that the data is properly
loaded in the slave shift register prior to the first SCK edge. Recall that in this implementation
the transmit register is double-buffered with the shift register, therefore, additional logic would
be required to monitor the transmit register and asynchronously load the shift register
(asynchronously in the sense of SCK) prior to the first shift whenever a write to the transmit
register was performed.

In this implementation, it was chosen instead to toggle the SS-signal for all CPHA
configurations and not support permitting SPISEL being held low. It is required that all SS-
signals be routed between SPI devices internally to the FPGA. The result of toggling of the SS-
signal is a minimization of FPGA resources.

Figure 3: Data Transfer on the SPI Bus with CPHA=0 and CR(24)=0 for 8-bit character.

16

MOSI

MISO

MSB LSB5

SS

16 5 LSBMSB

SCK (CPOL=1)

SCK (CPOL=0)

SCK Cycle 1 SCK Cycle 2 SCK Cycle 3 SCK Cycles 4-6 SCK Cycle 7 SCK Cycle 8

**

** Not defined, but normally MSB of character just received
156 www.xilinx.com v1.00b
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Serial Peripheral Interface (SPI) Design Specification
R

All SPI transfers are full-duplex where an 8-bit data character is transferred from the master to
the slave and an independent 8-bit data character is transferred from the slave to the master.
This can be viewed as an 8-bit shift register in the SPI Master device and another 8-bit shift
register in a SPI slave device that are connected as a circular 16-bit shift register.

The SPI specification details the timing and waveforms for byte transfers where the msb is
shifted out first on the SPI bus, but does not dictate the data content or sequence of data in the
sense of address information or other information type. All data written to the transmit register
will be transmitted on the SPI bus, and all data received on the SPI bus will be stored in a
receive register for the user logic to interpret.

Transfer Beginning Period

The definition of the transfer beginning period is taken directly from the M68HC11 Reference
Manual; this manual can be referenced for more details that are not reproduced herein. All SPI
transfers are started and controlled by a master SPI device.

As a slave, the processor considers a transfer to begin with the first SCK edge (CPHA=1)or the
falling edge of SS(N) (CPHA=0). In either CPHA format, a transfer can be aborted by taking the
SS(N) signal high, which causes the SPI slave logic and bit counters to be reset. In this
implementation, the software driver can deselect all slaves (i.e. SS(N) is all ones) to abort a
transaction, and it is, by design, the software responsibility to inhibit the user from changing
slaves during a SPI single transfer or buffer transfer. However, the hardware does allow such a
change in slave select.

Recall that in this implementation, the transmit register is double-buffered with the shift register.
Furthermore it is required that SS be asserted in all modes. In slave configuration, the data is
transmitted from the transmit register on the first OPB rising clock edge following SS-signal
being asserted if data is available in the register or FIFO. If data is not available, then the under-
run interrupt is asserted.

Transfer Ending Period

The definition of the transfer ending period is taken directly from the M68HC11 Reference
Manual; this manual can be referenced for more details which are not reproduced herein. As
stated in the manual, a SPI transfer is technically complete when the SPIF flag is set, but
depending on the configuration of the SPI system, there may be additional tasks to be

Figure 4: Data Transfer on SPI Bus with CPHA=1 and CR(24)=0 for 8-bit character.

16

MOSI

MISO

MSB LSB5

SS

16 5 LSBMSB

SCK (CPOL=1)

SCK (CPOL=0)

Cycle 1 Cycle 2 Cycle 3 Cycles 4-6 Cycle 7 Cycle 8

**

** Not defined, but normally LSB of previously transmitted character
v1.00b www.xilinx.com 157
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Serial Peripheral Interface (SPI) Design Specification
R

performed before the system can consider the transfer complete. In this VHDL implementation
and when configured without FIFOs, the equivalent of the SPIF bit is the bit 30 in the status
register which is the Rc_Full bit. Setting of this bit denotes the end of a transfer and that data
is available in the receive register. In this configuration, bit-27 of the interrupt register, which is
the Data Receive Register Full interrupt is asserted as well. The data received is clocked in the
receive register on the same clock edge as interrupt(27) being asserted.

When the SPI device is configured as a master without FIFOs, status register bits 31 and 28
are cleared, status register bits 29 and 30 are set, and interrupt bits 27 and 30 are set on the
first rising OPB clock edge after at the end of the eighth SCK cycle. Note that the end of the
eighth SCK cycle is a transition on SCK for CPHA=0, but is not denoted by a transition on SCK
for CPHA=1. However, the master internal clock provides this SCK edge which prompts the
setting/clearing of the bits noted.

When the SPI device is configured as a slave, setting/clearing of the bits discussed above for
a master coincides with the setting/clearing of the master bits for both cases of CPHA=0 and
CPHA=1. Recall that for CPHA=1 (i.e. no SCK edge denoting the end of the eighth clock
period) the slave has no way of knowing when the end of the eighth SCK period occurs unless
an OPB clock period counter was included in the SPI slave device. In this design, a counter
was implemented which permits the simultaneous setting of status bits and interrupts for both
master and slave SPI devices. It is noted that in the case of an external SPI slave device, SCK
can be asynchronous with the internal clock of the external slave device, hence, this vhdl
design cannot be used with external slaves that do not utilize the OPB clock.

When the SPI assembly is configured with FIFOs and a series of consecutive SPI 8-bit
character transfers are performed, status bits and interrupts do indicate completion of the first
SPI and the last. The only way to monitor when intermediate transfers are completed is to
monitor the receive FIFO occupancy number. There is also an interrupt when the transmit FIFO
is less than half full. Complete details on interrupts is discussed in a later section.

Optional FIFOs

One option to the system designer via Platform Generator is to include FIFOs in the SPI
assembly as shown in Figure 1. Since SPI is full-duplex both transmit and receive FIFOs are
instantiated as a pair. When FIFOs are implemented, the slave select address is required to be
the same for all data buffered in the FIFOs. This is required because a FIFO for the slave select
address is not implemented. Both transmit and receive FIFOS are 16 bytes deep and are
accessed via single OPB transactions since burst mode is not supported.

The transmit FIFO is write-only. When data is written in the FIFO, the occupancy number is
incremented and when a SPI transfer is completed, the number is decremented. As a
consequence of this operation, aborted SPI transfers still has the data available for a retry of
the transmission. The occupancy number is a read-only register. If a write of data is attempted
when the FIFO is full, then no acknowledgement is given and a bus timeout will occur.
Interrupts associated with the transmit FIFO include Data Transmit FIFO Empty, Transmit FIFO
Half Empty, and Transmit FIFO Under-run. See the later section on interrupts for details.

The receive FIFO is read-only. When data is read from the FIFO, the occupancy number is
decremented and when a SPI transfer is completed, the number is incremented. If a read is
attempted when the FIFO is empty, then no acknowledgement is given and a bus timeout will
occur. Data is automatically written to the FIFO from the SPI module shift register after the
completion of a SPI transfer. If the receive FIFO is full and more data is received, then a
Receive FIFO Overflow interrupt is issued. When this happens, all data attempted to be written
to the full receive FIFO by the SPI module is lost. The other interrupt associated with the
receive FIFO is the Receive FIFO Full interrupt.

SPI transfers, when the SPI assembly is configured with FIFOs, can be started in two different
ways depending on when the enable bit in the control register is set. If the enable bit is set prior
to the first data being loaded in the FIFO, then the SPI transfer begins immediately after the
write to the master transmit FIFO. If the FIFO is emptied via SPI transfers before additional
bytes are written to the transmit FIFO, an interrupt will be asserted. When the OPB-SPI SCK
frequency ratio is sufficiently small, this scenario is highly probable. Alternatively, the FIFO can
158 www.xilinx.com v1.00b
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Serial Peripheral Interface (SPI) Design Specification
R

be load with up to 16 bytes and then the enable bit can be set which starts the SPI transfer. In
this case, an interrupt is issued after all bytes are transferred. In all cases, more data can be
written to the transmit FIFOs to increase the number of bytes transferred before emptying the
FIFOs.

Local Master Loopback Mode

Local master loopback mode, although not included in the 68HC11 Reference Manual, has
been implemented to expedite testing. When this mode is selected via setting the Loop bit in
the control register, the transmitter output is internally connected to the receiver input. The
receiver and transmitter operate normally, except that received data (from remote slave) is
ignored. This mode is meaningful only when the SPI device is configured as a master.

Hardware Error Detection

The SPI architecture relies mainly on software controlled bus arbitration for multi-master
configurations to avoid conflicts and errors, but limited error detection is implemented in the SPI
hardware. The first error detection mechanism in hardware to be discussed is contention error
detection that detects when an SPI device configured as a master is selected (i.e. its SS-bit is
asserted) by another SPI device simultaneously configured as master. As noted before, the
master being selected as a slave immediately drives its outputs as necessary to avoid
hardware damage due to simultaneous drive contention. Simultaneously with driving outputs to
a safe condition, the master sets the mode-fault error (MODF) bit in the status register. This bit
is automatically cleared by reading the status register. Following a MODF error, the master
must be disabled and re-enabled with correct data. This may require clearing the FIFOs when
configured with FIFOs.

A similar error detection mechanism in hardware has been implemented for SPI slave devices.
The error detected is when a SPI device configured as a slave but is not enabled and is
selected (i.e. its SS-bit is asserted) by another SPI device. When this condition is detected,
interrupt bit 30 is set by a strobe to the interrupt register if the interrupt module is included in the
assembly. This error detection does not exist if the interrupt module is not included in the SPI
assembly.

Under-run and over-run conditions error detection is provided as well. Under-run conditions
can happen only in slave mode of operation, where a master commands a transfer but the
slave does not have data in the transmit register or FIFO for transfer. When a such a request is
made, the slave under-run interrupt is asserted and the slave shift register is loaded with all
zeros for transmission. Over-run can happen to both master and slave devices where a transfer
occurs when the receive register or FIFO is full. When such a transfer occurs, the data received
in that transfer is not registered (i.e. it is lost) and the over-run interrupt bit-26 is asserted.

Software Freeze Command Operation

The software freeze command impacts only master operation and not slave operation. When a
freeze command is asserted (i.e. Freeze signal goes high), the master completes any transfer
in progress, but does not initiate a subsequent SPI transfer until the freeze signal is pulled low.
Operation is identical to as if the SPI master transmit register/FIFO is empty when the Freeze
signal is asserted.

SPI Protocol with Manual Slave Select Assertion
This section briefly describes the SPI protocol where Slave Select (SS(N)) is manually asserted
by the user (i.e CR(24) = 1). This is the default configuration. The mode is provided to permit
transfers of an arbitrary number of bytes without toggling Slave Select until all the bytes are
transferred. In this mode where CR(24) = 1, the data in the Slave Select Register appears
directly on the SS(N) output. As described earlier SCK must be stable before assertion of Slave
Select, therefore, when manual slave select mode is utilized, the SPI master must be enabled
first (CR(24) = 1) to assert SCK to the idle state prior to asserting Slave Select. Note that the
Master Transfer Inhibit bit (CR(23)) can be utilized to inhibit Master transactions until the Slave
Select is asserted manually and all data registers are initialized as desired.
v1.00b www.xilinx.com 159
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Serial Peripheral Interface (SPI) Design Specification
R

G

O

S

When the above rules are followed, the timing is essentially as presented for the automatic
Slave Select assertion with the exception that assertion of Slave Select is under the user
control and the number of bytes transferred is controlled by the user. Note that the Master
Transfer Inhibit can be asserted to permit loading of registers or FIFOs as needed. This can be
utilized before the first transaction and after any transaction that is allowed to complete.

SPI
Configuration
Parameters

Table 1 lists parameters required to be defined in configuring the SPI assembly via Platform
Generator. Although the OPB data bus is currently 32-bits and planned to go to only 64-bits, the
IPIF in the SPI assembly is parameterized to allow data bus widths less than 32-bits and up to
16 bytes. This will permit use of the SPI attachment in other applications beyond CoreConnect
related applications.

Table 1: Parameters to Configure the SPI Assembly

roup

Label Feature

Parameter

(generic) Name
 Allowed
Values

Default
value to

GUI
Constraint and

VHDL type

PB G1 Platform Builder
assigned device ID
number

C_DEV_BLK_ID See Platform
Builder
specification

4 type: integer

G2 Enable/Disable
Model ID register

C_DEV_MIR_ENABL
E

non-zero =
included; zero
= not included

0 type: integer

G3 Base address for
assembly (IPIF and
SPI module)

C_BASEADDR Vector of
length
C_OPB_AWID
TH

None type:
std_logic_vector

G4 Permits alias of
address space by
making greater than
X7F

C_HIGHADDR C_BASEADD
R + any 2**n-1
value greater
than X7F

C_BASE
ADDR +
X7F

type:
std_logic_vector

Default value in GUI
assumes
C_IP_REG_BAR_O
FFSET = X60

G5 Include interrupt
module required for
multiple interrupt
conditions

C_INTERRUPT_PRE
SENT

non-zero =
included; zero
= not included

Set to 1

Disabled

type: integer

(Drivers require this
to be 1; see text);
Possible future
option

G6 OPB address bus
width

C_OPB_AWIDTH 32 type: integer

Includes bits for byte
addressing

G7 OPB databus width C_OPB_DWIDTH 32 type: integer

PI G8 Both receive and
transmit FIFOs

C_FIFO_EXIST non-zero =
included; zero
= not included

1 (i.e.
included)

type: integer
160 www.xilinx.com v1.00b
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Serial Peripheral Interface (SPI) Design Specification
R

G

SPI Assembly
I/O Signals

The I/O signals for the SPI Assembly are listed in Figure 2. The interfaces referenced in this
table are shown in Figure 1

G9 OPB to SPI SCK
frequencies ratio

C_OPB_SCK_RATIO 2, 4, 16, 32,
NX16 for
N=1,2,3,...,128

2 type: integer

G10 Slave-only mode C_SPI_SLAVE_ONLY non-zero =
included; zero
= not included

Set to 0

Disabled

type: integer;

Not implemented at
this time.

G11 Number of off-chip
Slave Select bits in
SS-vector

C_NUM_OFFCHIP_S
S_BITS

0 to the
Number of bits
in OPB
databus

Set to 0

Disabled

type: integer;

Must be less than or
equal to
C_NUM_SS_BITS.

G12 Total number of
Slave Select bits in
SS-vector

C_NUM_SS_BITS 1 up to the
number of bits
in OPB
databus

1 type: integer;

Must be less than or
equal to the number
of bits in the OPB
databus.

Table 1: Parameters to Configure the SPI Assembly

roup

Label Feature

Parameter

(generic) Name
 Allowed
Values

Default
value to

GUI
Constraint and

VHDL type

Table 2: SPI Assembly I/O Signals

Group # label Signal Name
External
Interface I/O Signal Description

System P1 OPB_Rst System I Reset signal

P2 IP2INTC_Irpt Interrupt
controller

O Interrupt signal to interrupt
controller

P3 Freeze System I Software freeze command
signal

OPB P4 OPB_Clk OPB I OPB Bus clock

P5 OPB_select OPB I Select signal from OPB

P6 OPB_RNW OPB I OPB read/write

P7 OPB_seqAddr OPB I OPB sequential address

P8 OPB_BE OPB I OPB byte enable

P9 OPB_ABus OPB I OPB address bus

P10 OPB_DBus OPB I OPB data bus

P11 SPI_DBus OPB OR-logic O Data output bus (gated)

P12 SPI_xferAck OPB OR-logic O Attachment transfer
acknowledgement
v1.00b www.xilinx.com 161
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Serial Peripheral Interface (SPI) Design Specification
R

Port and
Parameter
Dependencies

Table 3 lists dependencies of ports and parameters on each parameter.

P13 SPI_errAck OPB OR-logic O Attachment bus error (tied low)

P14 SPI_toutSup OPB OR-logic O Attachment time-out suppress
(tied low)

P15 SPI_retry OPB OR-logic O Attachment retry (tied low)

SPI P16 SCK_I All SPI
devices

I SPI Bus Clock Input

P17 SCK_O All SPI
devices

O SPI Bus Clock Output

P18 SCK_T All SPI
devices

O SPI Bus Clock 3-state Enable
(3-state when high)

P19 MOSI_I All SPI
devices

I Master out, Slave in Input

P20 MOSI_O All SPI
devices

O Master out, Slave in Output

P21 MOSI_T All SPI
devices

O Master out, Slave in 3-state
Enable (3-state when high)

P22 MISO_I All SPI
devices

I Master in, slave out Input

P23 MISO_O All SPI
devices

O Master in, slave out Output

P24 MISO_T All SPI
devices

O Master in, slave out 3-state
Enable (3-state when high)

P25 SPISEL All SPI master
devices

I Local SPI slave select active
low input

P26 SS_I None--
Included for

tool
requirements

I Input of slave select vector of
length N Input where there are

N SPI devices, but not
connected

P27 SS_O Each bit is
interfaced to a

SPI device

O One-hot encoded, active low
slave select vector of length N

Output

P28 SS_T Each bit is
interfaced to a

SPI device

O Single 3-state control signal for
slave select vector of length N

(3-state when high)

Table 2: SPI Assembly I/O Signals

Group # label Signal Name
External
Interface I/O Signal Description
162 www.xilinx.com v1.00b
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Serial Peripheral Interface (SPI) Design Specification
R

Table 3: Port and Parameter Dependencies for Slave Attachment

Group

label

Parameter

(generic) name Affects Depends Relationship Description

OPB G1 C_DEV_BLK_ID None None

G2 C_DEV_MIR_ENABLE None None

G3 C_BASEADDR None G6 Must be of length
C_OPB_AWIDTH where lower
order bits are zeros. The
number of lower order bits that
are zero is equal to the number
of continuous lower order bits in
C_HIGHADDR that are non-
zero and not equal to the same
bit in C_BASEADDR.

G4 C_HIGHADDR None G3, G6 Included at request of Platform
Generator Designers

G5 C_INTERRUPT_PRESEN
T

None None Software drivers available only
when present (i.e. 1)

G6 C_OPB_AWIDTH P9,G3-4 None Sets OPB address bus interface
width

G7 C_OPB_DWIDTH P8,P10 None Sets OPB data bus and byte
enable interface widths

SPI G8 C_FIFO_EXIST None None

G9 C_OPB_SCK_RATIO P16 None Determines OPB to SCK
frequency ratio

G10 C_SPI_SLAVE_ONLY P16-18, P20 None Not implemented at this time,
but will be in the future.

G11 C_NUM_OFFCHIP_SS_BI
TS

Number of
pins assigned

G12 Defines the number of bits in the
SS-vector that go off-chip (i.e.
off-chip SPI slave devices).
Must be less than or equal to
C_NUM_SS_BITS

G12 C_NUM_SS_BITS P26-28 None Defines the number of bits in the
SS-vector.
v1.00b www.xilinx.com 163
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Serial Peripheral Interface (SPI) Design Specification
R

SPI Register
Descriptions

The SPI assembly contains addressable registers for read/write operations as shown in
Table 4. The base address is set by the parameter C_BASEADDR and all SPI register
addresses are calculated by an offset from C_BASEADDR. The first SPI register is at offset
C_IP_REG_BAR_OFFSET.

The IPIF also contains the interrupt registers and IP reset module which are both optional
registers. Addresses of both register sets are calculated by an offset from C_BASEADDR.

All bit indices are relative the OPB bus. The highest bit index is the lsb. In this document, bit
assignment will be made assuming a 32-bit OPB; assignment for either wider or narrower
buses follows the same convention.

Table 4 shows addresses of all the SPI registers, the IPIF interrupt registers and the IP Reset
module. The transmit FIFO occupancy and Receive FIFO occupancy only exist when the SPI
assembly is configured via parameters to include FIFOs. Note that the transmit and receive
registers have independent addresses which differs from the 68HC11 specification where the
same address is to be assigned to the two independent registers.

SPI Interrupt Registers

Interrupt Module Specifications

The interrupt registers are in the interrupt model which is instantiated in the IPIF module of the
SPI assembly.

The SPI assembly has the option to include the interrupt module which permits multiple
conditions for interrupt or to not include the module and have an interrupt strobe occur upon
only the completion of a transfer. Of course, all status register bits are available for detailed
information independent of the interrupt choice. The reason for this option is that the interrupt
module utilizes about 25 LUTs that can be eliminated if multiple interrupt functionality is

Table 4: SPI Assembly Registers and Offset from BAR

Register Name OPB Address Access

Interrupt Global Enable
Register

C_BASEADDR + 0X1C Read/Write

Interrupt Register C_BASEADDR + 0X20 Read/Write "1" to clear

Interrupt Enable Register C_BASEADDR + 0X28 Read/Write

Reset Module C_BASEADDR + 0X40 Read/Write

Control Register (CR) C_BASEADDR + 0X060 Read/Write

Status Register (SR) C_BASEADDR + 0X064 Read

Data Transmit Register (DTR)
whether it is a single register
or the transmit FIFO

C_BASEADDR + 0X068 Write

Data Receive Register (DRR)
whether it is a single register
or the receive FIFO

C_BASEADDR + 0X06C Read

Slave Select Register (SSR) C_BASEADDR + 0X070 Read/Write

Transmit FIFO Occupancy C_BASEADDR + 0X074 Read

Does not exist if FIFOs
are not present

Receive FIFO Occupancy C_BASEADDR + 0X078 Read

Does not exist if FIFOs
are not present
164 www.xilinx.com v1.00b
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Serial Peripheral Interface (SPI) Design Specification
R

sacrificed. This option was implemented prior to optimizing the interrupt controller which, at the
time, yielded much greater savings. If the interrupt module is not implemented, then the single
interrupt condition is when the receive register or FIFO is full. At this time, software will not be
developed utilizing the single interrupt scheme and it will be the responsibility of the user to
provide software.

Interrupt Global Enable Descriptions

A global enable is provided, to globally enable, or of more utility, globally disable interrupts from
the SPI device. This bit is essentially ANDed with the input to the interrupt controller. Bit
assignment is shown in Table 6. Unlike most other registers, this bit is the MSB on the OPB.
This bit is read/write and cleared upon reset.

Interrupt Signal Descriptions

When the interrupt module is included, up to seven unique interrupt conditions are possible
depending upon whether the system is configured with FIFOs or not. A system without FIFOs
has 6 interrupts that are sent to the IPIF interrupt module where some are redundant as
discussed below. The IPIF interrupt module has a register that can enable each interrupt
independently. Bit assignment in the Interrupt register for a 32-bit databus is shown in Table 6.
The interrupt register is read-only and bits are cleared by writing a ’1’ to the bit(s) being cleared.
All bits are cleared upon reset.

Table 5: Interrupt Register Bit Definitions (Bit assignment assumes 32-bit bus)

Bit(s) Name Access

Reset

Value Description

0 Interrupt
Global
Enable

Read/Write 0 Interrupt Global Enable- OPB bit (0) is the
Interrupt Global Enable bit. Enables all
individually enabled interrupts to be passed to
the interrupt controller.

• ’0’ - Not enabled.

• ’1’ - Enabled.

1-31 Read 0 Unassigned-

Table 6: Interrupt Register Bit Definitions (Bit assignment assumes 32-bit bus)

Bit(s) Name Access

Reset

Value Description

31 MODF Read/Write
’1’ to clear

0 MODF- Interrupt(31) is the Mode-Fault Error
Flag- This interrupt is generated if the SS signal
goes active while the SPI device is configured
as a master. This bit is set immediately by upon
SS going active by a transition of the MODF
status bit from low to high.

30 Slv_MODF Read/Write
’1’ to clear

0 Slv_MODF- Interrupt(30) is the slave Mode-
Fault Error Flag- This interrupt is generated if
the SS signal goes active while the SPI device
is configured as a slave but is not enabled. This
bit is set immediately upon SS going active and
continually set if SS is active and the device is
not enabled
v1.00b www.xilinx.com 165
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Serial Peripheral Interface (SPI) Design Specification
R

29 DTR Empty Read/Write
’1’ to clear

0 Data Transmit Register (FIFO) Empty-
Interrupt(29) is the Data Transmit
Register(FIFO) Empty interrupt. Without
FIFOs, this bit is set at the end of a SPI byte
transfer by a one-clock period strobe to the
interrupt register. With FIFOs, this bit is set at
the end of the SPI byte transfer when the
transmit FIFO is emptied by a one-clock period
strobe to the interrupt register. See section on
definition of end of transfer. In the context of the
68HC11 Reference Manual, when configured
without FIFOs, this interrupt is equivalent in
information content to the complement of SPI
transfer complete flag (SPIF) interrupt bit.

28 DTR Under-
run

Read/Write
’1’ to clear

0 Transmit Register/FIFO Under-run-
Interrupt(28) is the Transmit Register/FIFO
under-run interrupt. This bit is set by a one-
clock period strobe to the interrupt register
when data is request from an "empty" transmit
register/FIFO by the SPI state machine in order
to perform a SPI transfer. This can occur only
when the SPI device is in slave mode. All zeros
are loaded in the shift register and transmitted
by the slave in an under-run condition.

27 DRR Full Read/Write
’1’ to clear

0 Data Receive Register/ FIFO Full-
Interrupt(27) is the Data Receive Register Full
interrupt. Without FIFOs, this bit is set at the
end of a SPI byte transfer by a one-clock period
strobe to the interrupt register. With FIFOs, this
bit is set at the end of the SPI byte transfer
when the receive FIFO has been filled by a
one-clock period strobe to the interrupt register.

26 DRR Over-
run

Read/Write
’1’ to clear

0 Receive Register/FIFO Over-run-
Interrupt(26) is the Receive FIFO over-run
interrupt. This bit is set by a one-clock period
strobe to the interrupt register when an attempt
to write data to a full receive register or FIFO is
made by the SPI state machine in order to
complete a SPI transfer. This can occur when
the SPI device is in either master or slave
mode.

25 Tx FIFO
Near Empty

Read/Write
’1’ to clear

0 Transmit FIFO Less Than or Equal to Half
Empty- Interrupt(25) is the Transmit FIFO near
empty interrupt. This bit is set by a one-clock
period strobe to the interrupt register when the
occupancy value is decremented from ’1000’ to
’0111’. Note that "0111’ means there are 8
characters in the FIFO to be transmitted. This
interrupt exists only if the SPI Assembly is
configured with FIFOs.

Table 6: Interrupt Register Bit Definitions (Bit assignment assumes 32-bit bus)

Bit(s) Name Access

Reset

Value Description
166 www.xilinx.com v1.00b
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Serial Peripheral Interface (SPI) Design Specification
R

Interrupt Enable Descriptions

The SPI assembly has interrupt enable features. Bit assignment in the Interrupt enable register
is shown in Table 7. The interrupt enable register is read/write. All bits are cleared upon reset.

24 Read 0 Unassigned-

Table 7: Interrupt Register Bit Definitions (Bit assignment assumes 32-bit bus)

Bit(s) Name Access

Reset

Value Description

31 MODF set
enable

Read/Write 0 Mode-Fault Error Flag Enable- Enables this
interrupt to be passed to the interrupt controller.

• ’0’ - Not enabled.

• ’1’ - Enabled.

30 Slv_MODF
enable

Read/Write 0 Slv_MODF Enable- Enables this interrupt to be
passed to the interrupt controller.

• ’0’ - Not enabled.

• ’1’ - Enabled.

29 DTR Empty
enable

Read/Write 0 Data Transmit Register (FIFO) Empty
Enable- Enables this interrupt to be passed to
the interrupt controller.

• ’0’ - Not enabled.

• ’1’ - Enabled.

28 DTR
Under-run

enable

Read/Write 0 Transmit FIFO Under-run Enable- Enables
this interrupt to be passed to the interrupt
controller.

• ’0’ - Not enabled.

• ’1’ - Enabled.

27 DRR Full
enable

Read/Write 0 Data Receive Register Full/Receive Full
FIFO Enable- Enables this interrupt to be
passed to the interrupt controller.

• ’0’ - Not enabled.

• ’1’ - Enabled.

26 DRR Over-
run enable

Read/Write 0 Receive FIFO Over-run Enable- Enables this
interrupt to be passed to the interrupt controller.

• ’0’ - Not enabled.

• ’1’ - Enabled.

25 Tx FIFO
Near

Empty
enable

Read/Write 0 Transmit FIFO Less Than or Equal to Half
Empty Enable- Enables this interrupt to be
passed to the interrupt controller.

• ’0’ - Not enabled.

• ’1’ - Enabled.

24 Read/Write 0 Unassigned-

Table 6: Interrupt Register Bit Definitions (Bit assignment assumes 32-bit bus)

Bit(s) Name Access

Reset

Value Description
v1.00b www.xilinx.com 167
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Serial Peripheral Interface (SPI) Design Specification
R

SPI Assembly Reset Descriptions
The IPIF module in the SPI assembly has instantiated in it the IP reset module. This module
permits software reset of the SPI module independent of other modules in the system and has
another register for test purposes.

SPI Control Register (CR)
Bit assignment in the SPI Control Register is shown in Table 8. Bit assignment was made to
follow the assignment pattern of Xilinx IPIF specifications and, when possible, follow the
68HC11 assignment pattern.

Table 8: SPI Control Register Bit Definitions (Bit assignment assumes 32-bit bus)

Bit(s) Name Core Access Reset Value Description

31 LOOP Read/Write 0 Local loopback mode-Enables local
loopback operation and is functional only
in master mode.

• ’0’ - Normal operation.

• ’1’ - Loopback mode. The transmitter
output is internally connected to the
receiver input. The receiver and
transmitter operate normally, except
that received data (from remote
slave) is ignored.

Note that the interrupt enable bit which
resides in the this bit position of the
68HC11 specification resides in the
interrupt enable register in this
implementation; see exceptions.

30 SPE Read/Write 0 SPI System Enable select bit-Setting
this bit high enables the SPI devices as
noted below.

• ’0’ - SPI System OFF. Both master
and slave outputs are in "3-state" and
slave inputs ignored.

• ’1’ - SPI System ON. Master outputs
active (e.g. MOSI and SCK in idle
state) and slave outputs will become
active if SS becomes asserted.
Master will start transfer when
transmit data is available.

29 MSTR Read/Write if
master-slave

option is
implemented
.Read Only if

slave-only
option is

implemented

0 MSTR- Setting this bit configures the SPI
device as a slave or master if that option
is implemented via parameters. If slave-
only option is implemented, then this bit is
fixed to ’0’.

• ’0’ - Slave configuration.

• ’1’ - Master configuration.

28 CPOL Read/Write 0 Clock Polarity select bit-Setting this bit
defines clock polarity.

• ’0’ - Active high clock; SCK idles low.

• ’1’ - Active low clock; SCK idles high.
168 www.xilinx.com v1.00b
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Serial Peripheral Interface (SPI) Design Specification
R

27 CPHA Read/Write 0 Clock Phase select bit-Setting this bit
selects one of two fundamentally different
transfer formats. See timing diagrams and
discussion of diagrams.

26 Tx FIFO Reset Read/Write 0 Transmit FIFO Reset. This bit forces a
reset of the FIFO pointer and asserts
FIFO empty flag. FIFO contents are
unchanged. This bit is reset automatically
reset to ’0’ one OPB clock period after set
to ’1’. This bit is unassigned when the SPI
assembly in not configured with FIFOs.

• ’0’ - Transmit FIFO normal operation

• ’1’ - Reset transmit FIFO pointer

25 Rx FIFO Reset Read/Write 0 Receive FIFO Reset. This bit forces a
reset of the FIFO pointer and asserts
FIFO empty flag. FIFO contents are
unchanged. This bit is reset automatically
reset to ’0’ one OPB clock period after set
to ’1’. This bit is unassigned when the SPI
assembly in not configured with FIFOs.

• ’0’ - Transmit FIFO normal operation

• ’1’ - Reset receive FIFO pointer

24 Manual SS
Assertion
Enable

Read/Write 1 • Manual SS Assertion Enable- This
bit forces the data in the Slave Select
register to be asserted on the SS
output anytime the device is
configured as a master and the device
is enabled (SPE asserted). This bit has
no effect on slave operation.

• ’0’ - SS assertion by Master state
machine

• ’1’ - SS follows data in Slave Select
register

23 Master
Transaction

Inhibit

Read/Write 1 Master Transaction Inhibit- This bit
inhibits Master transactions in the same
way Freeze functions. This bit has no
effect on slave operation.

• ’0’ - Master transactions enabled

• ’1’ - Master transactions inhibited

Table 8: SPI Control Register Bit Definitions (Bit assignment assumes 32-bit bus)

Bit(s) Name Core Access Reset Value Description
v1.00b www.xilinx.com 169
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Serial Peripheral Interface (SPI) Design Specification
R

SPI Status Register (SR)

Bit assignment in the SPI Status Register is shown in Table 9 Bit assignment was made to fol-
low the assignment pattern of Xilinx IPIF specifications and, when possible, follow the 68HC11
assignment pattern. The status register is read-only. Note reset default values.

Table 9: SPI Status Register Bit Definitions (Bit assignment assumes 32-bit bus)

Bit(s) Name Access

Reset

Value Description

31 Rc_Empty Read 1 Receive Empty- When a receive FIFO exists,
this bit will be set high when the receive FIFO is
empty; the occupancy of the FIFO is
decremented with each FIFO read operation.
When FIFOs don’t exist, this bit is set high
when the receive register has been read. This
bit is cleared at the end of a successful SPI
transfer.

30 Rc_Full Read 0 Receive Full- When a receive FIFO exists this
bit will be set high when the receive FIFO is full;
the occupancy of the FIFO is incremented with
the completion of each SPI transaction. When
FIFOs don’t exist, this bit is set high when an
SPI transfer has completed. When FIFOs don’t
exist Rc_Empty and Rc_Full are complements.

29 Tx_Empty Read 1 Transmit Empty- When a transmit FIFO exists,
this bit will be set high when the transmit FIFO
is empty; the occupancy of the FIFO is
decremented with the completion of each SPI
transfer. When FIFOs don’t exist, this bit is
cleared with the completion of a SPI transfer.
Either with or without FIFOs, this bit is cleared
upon an OPB write to the FIFO or transmit
register.

28 Tx_Full Read 0 Transmit Full- When a transmit FIFO exists
this bit will be set high when the transmit FIFO
is full. When FIFOs don’t exist, this bit is set
high when an OPB write to the register has
been made and it is cleared when the SPI
transfer has completed.

27 MODF Read 0 Mode-Fault Error Flag- This flag is set if the
SS signal goes active while the SPI device is
configured as a master. MODF is automatically
cleared by reading the SR. MODF does
generate an interrupt with a single-cycle strobe
when the MODF bit transitions from a low to a
high.

• ’0’ - No error.

• ’1’ - Error condition detected.

26 Read 0 Unassigned-

25 Read 0 Unassigned-

24 Read 0 Unassigned-
170 www.xilinx.com v1.00b
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Serial Peripheral Interface (SPI) Design Specification
R

Data Transmit Register (DTR)
This register is write only and contains data to be transmitted on the SPI bus. It is double
buffered with the shift register. The data is transferred from the register to the shift register
following enable bit being set high in master mode or following SPISEL being active in slave
mode. If a transfer is in progress, the data in the DTR is loaded in the shift register as soon as
the data in the shift register is transferred to the receive register (DRR) and a new transfer
starts. The data in the DTR is held in the DTR until a subsequent write overwrites the data.
Table 10 shows specifics of the data format.

When a Transmit FIFO exists, data is written directly in the FIFO and the register is simply in
the FIFO. The pointer is decremented at the time of completion of each SPI transfer.

The hardware that forwards data from the register or FIFO to shift register will never cause a
write collision error. Attempting to write to a full register or FIFO will not result in a write
acknowledgement for the OPB transaction, but rather an OPB timeout.

Data Receive Register (DRR)
This double buffer receive register contains the data received from the SPI bus. The received
data is placed in this register after each complete transfer if the register is empty. The SPI
architecture does not provide a means for a slave to throttle traffic on the bus; consequently,
the DRR is update following each completed transaction only if the DRR was read prior to the
last SPI transfer. If the DRR was not read (i.e. is full), then the most recently transferred data
will be lost and a receive over-run interrupt will occur. The same condition can occur with a
master SPI device as well. For both master and slave SPI devices with a receive FIFO, the data
is buffered in the FIFO. If a SPI transfers occur with the FIFO full, then the most recently
transferred data will be lost and a receive over-run interrupt will occur. The receive FIFO is read
only. If an attempt to read an empty receive register or FIFO is made, then an OPB timeout
error will occur because an acknowledgement will not be issued. Table 11 shows specifics of
the data format.

Slave Select Register (SSR)
This field contains an N-length vector that specifies the slave that the local master is to
communicate with. This vector is a active-low, one-hot encoded vector (SS(N)). Actual
assignment of slaves to specific bits is performed by Platform Generator. This register is
read/write Table 12 shows specifics of the data format. The index of SS(N) increments in the
opposite direction to that of the OPB bit index. OPB bit index 31 is bit zero of SS(N), OPB bit
index 30 is bit index 1 of SS(N) and so on. The reason for reversing the order of index
incrementing is considerations in software driver development.

Table 10: SPI Data Transmit Register Bit Definitions (Bit assignment assumes 32-bit
bus)

Bit(s) Name Access

Reset

Value Description

24-
31

D0 - D7 Write Only 0x00 SPI Transmit Data

Table 11: SPI Data Receive Register Bit Definitions (Bit assignment assumes 32-bit
bus)

Bit(s) Name Access

Reset

Value Description

24-
31

D0 - D7 Read Only 0x00 SPI Receive Data
v1.00b www.xilinx.com 171
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Serial Peripheral Interface (SPI) Design Specification
R

Transmit FIFO Occupancy Register (Tx_FIFO_OCY)
This field contains the occupancy number greater than one for the Transmit FIFO when the SPI
assembly is configured with FIFOs. The actual occupancy is the binary value plus 1. This
register is read only and does not exist when the assembly is configured without FIFOs. The
Transmit FIFO Empty Interrupt or Status Bit is the only reliable way to determine if the FIFO is
empty; reading this register cannot be used to determine if the FIFO is empty. An attempt to
write to this register does not yield an acknowledgement, but rather an OPB timeout. Table 13
shows specifics of the data format.

Receive FIFO Occupancy Register (Rc_FIFO_OCY)
This field contains the occupancy number greater than one for the Receive FIFO when the SPI
assembly is configured with FIFOs. The actual occupancy is the binary value plus 1. This
register is read only and does not exist when the assembly is configured without FIFOs. The
Receive FIFO Empty Status Bit is the only reliable way to determine if the FIFO is empty;
reading this register cannot be used to determine if the FIFO is empty. An attempt to write to
this register does not yield an acknowledgement, but rather an OPB timeout. Table 14 shows
specifics of the data format.

Table 12: SPI Slave Select Address Register Bits (Bit assignment assumes 32-bit bus)

Bit(s) Name Access

Reset

Value Description

(31-N+1)
to 31

Slave Address Read/
Write

all ’1’s Active-low, one-hot encoded slave select
vector of length N-bits. N must be less

than or equal to the databus width. Note
that SS(N) increments in the opposite
direction to that of the OPB bit index

Table 13: Transmit FIFO Occupancy Register Bits (Bit assignment assumes 32-bit bus)

Bit(s) Name Access

Reset

Value Description

24-
27

Reserved Read 0x0 Reserved.

28-
31

Occupancy
Value

Read Bit 4 is the MSB. The binary value plus 1
yields the occupancy.

Table 14: Receive FIFO Occupancy Register Bits (Bit assignment assumes 32-bit bus)

Bit(s) Name Access

Reset

Value Description

24-
27

Reserved Read 0x0 Reserved

28-
31

Occupancy
Value

Read Bit 4 is the MSB. The binary value plus 1
yields the occupancy.
172 www.xilinx.com v1.00b
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Serial Peripheral Interface (SPI) Design Specification
R

Design
Implementation

Target Technology
The intended target technology is a VirtexTM II FPGA.

Device Utilization and Performance Benchmarks
This section will be updated when the design has been completed. It will contain the resources
and timing for various values of the parameters.

Since the SPI Assembly is a module that will be used with other design pieces in the FPGA, the
utilization and timing numbers reported in this section are just estimates. As the SPI Assembly
is combined with other FPGA designs, the utilization of FPGA resources and timing of the SPI
Assembly will vary from the results reported here.

In order to analyze the SPI timing within the FPGA, a design was created that instantiated the
SPI Assembly with registers on all of the SPI ports. This allowed a constraint to be placed on
the clock net for the SPI Assembly to yield more realistic timing results. Using this method, the
clock frequency register-to-register varied from 110-125 MHz depending on the actual place
and route of the design in the FPGA.

The SPI Assembly benchmarks are shown in Table 15 for a VirtexII -5 FPGA.

Device resource utilization can be estimated by the following formula:

TBD

Flow
Description

This section provides information on setting the SPI registers to initiate and complete bus
transactions.

SPI Master Device with or without FIFOs where the slave select vector is
asserted manually via command register bit(24) assertion
This flow permits the transmittal of N-bytes in a single toggling of the slave select vector
(default mode). Follow these steps to successfully complete an SPI transaction:

1. Start from proper state including SPI bus arbitration

2. Configure master interrupt enable registers as desired.

3. Configure target slave SPI device as required.

4. Write initial data to master transmit register/FIFO. This assumes that the SPI Master is
disabled.

5. Insure Slave Select Register has all ones.

Table 15: SPI Assembly FPGA Performance and Resource Utilization Benchmarks (VirtexII -5)

Parameter Values (For Example) Device Resources fMAX

C_GEN1 C_GEN2 C_GEN3 C_GEN4 Slices Slice

Flip-Flops

4-input

LUTs

fMAX_CMB fMAX_REG

Notes:
1. These benchmark designs contain only the IIC with registered inputs/outputs without any additional logic. Benchmark

numbers approach the performance ceiling rather than representing performance under typical user conditions.
v1.00b www.xilinx.com 173
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Serial Peripheral Interface (SPI) Design Specification
R

6. Write configuration data to master SPI device CR as desired including setting bit 24 for
manual asserting of SS-vector and setting both enable bit and Master Transfer Inhibit bit.
This initializes SCK and MOSI but inhibits transfer.

7. Write to Slave Select Register to manual assert of SS-vector.

8. Write the above configuration data to master SPI device CR, but clear inhibit bit which
starts transfer.

9. Wait for interrupt (typically interrupt(30)) or poll status for completion. Wait time will depend
on clock ratio.

10. Set Master Transaction Inhibit bit to service interrupt request. Writing new data to master
register/FIFOs and slave device then clear Master Transaction Inhibit bit to continue N 8-bit
character transfer. Note that an overrun of the receive register/FIFO can occur if the
receive register/FIFOs are not read properly. Also note that SCK will have "stretched" idle
levels between byte transfers (or groups of byte transfers if utilizing FIFOs) and that MOSI
can transition at end of a byte transfer (or group of transfers) but will be stable at least one-
half SCK period prior to sampling edge of SCK.

11. Repeat previous two steps until all data is transferred

12. Write all ones to slave select register or exit manual slave select assert mode to deassert
SS-vector while SCK and MOSI are in the idle state.

13. Disable devices as desired.

SPI Master and Slave Devices without FIFOs performing one 8-bit
transfers (optional mode)
Follow these steps to successfully complete an SPI transaction:

1. Start from proper state including SPI bus arbitration.

2. Configure master and slave interrupt enable registers as desired.

3. Write configuration data to master SPI device CR as required.

4. Write configuration data to slave SPI device CR as required.

5. Write the active-low, one-hot encoded slave select address to the master SS-register.

6. Write data to slave transmit register as required.

7. Write data to master transmit register to start transfer.

8. Wait for interrupt (typically interrupt(30)) or poll status for completion.

9. Read interrupt registers of both master and slave SPI devices as required.

10. Perform interrupt requests as required.

11. Read status registers of both master and slave SPI devices as required.

12. Perform actions as required or dictated by status register data.

SPI Master and Slave Devices where Registers/FIFOs are filled before
SPI transfer is started and multiple discrete 8-bit transfers are
transferred (optional mode)
Follow these steps to successfully complete an SPI transaction:

1. Start from proper state including SPI bus arbitration

2. Configure master and slave interrupt enable registers as desired.

3. Write configuration data to master SPI device CR as required.

4. Write configuration data to slave SPI device CR as required.
174 www.xilinx.com v1.00b
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Serial Peripheral Interface (SPI) Design Specification
R

5. Write the active-low, one-hot encoded slave select address to the master SS-register.

6. Write all data to slave transmit Register/FIFO as required.

7. Write all data to master transmit Register/FIFO.

8. Write enable bit to master control register which starts transfer.

9. Wait for interrupt (typically interrupt(30)) or poll status for completion.

10. Read interrupt registers of both master and slave SPI devices as required.

11. Perform interrupt requests as required.

12. Read status registers of both master and slave SPI devices as required.

13. Perform actions as required or dictated by status register data.

SPI Master and Slave Devices with FIFOs where some initial data is
written to FIFOs, the SPI transfer is started, data is written to the FIFOs
as fast or faster than the SPI transfer and multiple discrete 8-bit transfers
are transferred (optional mode)
Follow these steps to successfully complete an SPI transaction:

1. Start from proper state including SPI bus arbitration

2. Configure master and slave interrupt enable registers as desired.

3. Write configuration data to master SPI device CR as required.

4. Write configuration data to slave SPI device CR as required.

5. Write the active-low, one-hot encoded slave select address to the master SS-register.

6. Write initial data to slave transmit FIFO as required.

7. Write initial data to master transmit FIFO.

8. Write enable bit to master control register which starts transfer.

9. Continue writing data to both master and slave FIFOs.

10. Wait for interrupt (typically interrupt(30)) or poll status for completion.

11. Read interrupt registers of both master and slave SPI devices as required.

12. Perform interrupt requests as required.

13. Read status registers of both master and slave SPI devices as required.

14. Perform actions as required or dictated by status register data.

Platform
Generator
Considerations

Platform Generator is the tool that will allow processor systems to be configured using building
blocks of IP. Based on the configuration of the system and the IP in the system, the Platform
Generator tool will create the Configuration ROM (CROM) with information about each IP block
and will set the parameters for each IP block based on the system configuration.

Certain system parameters will be input into Platform Generator such as the OPB clock
frequency and the ratio of OPB to SCK frequencies (C_OPB_SCK_RATIO) which will affect
system performance.

Platform Generator must also instantiate 3-state I/O pins for SCK, MOSI and MISO when the
parameter C_NUM_OFFCHIP_SS_BITS is non-zero. In addition, a number of slave select bits
(given by C_NUM_OFFCHIP_SS_BITS) must connected to I/0 for off-chip slave selection.
v1.00b www.xilinx.com 175
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Serial Peripheral Interface (SPI) Design Specification
R

Specification
Exceptions

Exceptions to the Motorola’s M68HC11-Rev. 4.0 Reference Manual
A slave mode-fault error interrupt was added to provide an interrupt if a SPI device is
configured as a slave and is selected when not enabled.

In this design, the data transmit and data receive registers have independent addresses. This
is an exception to the 68HC11 specification which calls for the two registers to have the same
address.

All SS-signals are required to be routed between SPI devices internally to the FPGA. This is
because toggling of the SS-signal is utilized in slaves to minimize FPGA resources.

Manual control of the SS-signals is provided by setting bit 24 in the command register. When
this bit is set, the vector in the slave select register is asserted when the device is configured as
a master and is enabled. When this mode is enabled, multiple bytes can be transferred without
toggling the SS-vector.

A control bit is provided to inhibit master transfers. This bit is effective in any master mode, but
has main utility in manual control of the SS-signals.

In this implementation without FIFOs, both the transmit and receive register are double
buffered. Hardware prevents data transfer from the transmit buffer to the shift register while an
SPI transfer is in progress, consequently, the write collision error described in the MC68HC11
Reference Manual can not occur. In the 68HC11 implementation, the transmit register is
transparent to the shift register which necessitates the write collision error (WCOL) detection
hardware; however, it is not required or implemented in this implementation.

The interrupt enable bit (SPIE) defined by the 68HC11 specifications which resides in the
68HC11 control register has been moved to the interrupt bit-wise enable register

In the position of the SPIE bit is a bit to select local master loopback mode for testing. This is
not specified in the 68HC11 specification, but is in the 8260 specification and it is supported in
this implementation.

An option is implemented in the this FPGA design to implement FIFOs on both transmit and
receive (Full Duplex only).

An option is implemented in this FPGA design to select slave-only mode; however, this option
is not part of the 68HC11 specification. This was implemented to reduce FPGA resource
required when slave-only operation is desired.

The baud rate generator is specified by Motorola to be programmable via bits in the control
register; however, in this FPGA design the baud rate generator is programmable via
parameters in the VHDL implementation. Furthermore, in addition to the prescribed ratios of 2,
4, 16 and 32, all integer multiples of 16 up to 2048 are allowed.

Reference
Documents

The following documents contain reference information important to understanding the SPI
design:

• [1] Motorola’s M68HC11-Rev. 4.0 Reference Manual

• Motorola’s MPC8260 PowerQUICC II User’s Manual 4/1999 Rev. 0
176 www.xilinx.com v1.00b
1-800-255-7778 MicroBlaze Hardware Reference Guide

Summary This document describes the specifications for a general purpose input/output core for the OPB
bus. This document applies to the following peripherals:

Overview The GPIO (General Purpose Input/Output) is a 32-bit peripheral that attaches to the OPB (On-
chip Peripheral Bus), and has the following features:

Features
• OPB V2.0 bus interface with byte-enable support

• Supports 32-bit, 16-bit, and 8-bit bus interfaces

• Each GPIO bit dynamically programmable as input or output

• Number of GPIO bits configurable up to size of data bus interface

• Can be configured as inputs-only to reduce resource utilization

GPIO Organization
The GPIO is a simple peripheral consisting of two registers and a multiplexer for reading
register contents and the GPIO I/O signals. The GPIO block diagram is shown in the following
figure:

Xilinx Embedded Processors: OPB Peripherals

March 2002

OPB General Purpose Input/Output
(GPIO) Specification

R

opb_gpio v1.00a

Figure 1: GPIO Block Diagram

GPIO_TRI

GPIO_DATA

GPIO_WIDTH

GPIO_WIDTH

GPIO_IO

GPIO_WIDTH

GPIO_DBUS

OPB_DBUS

OPB
D Q

D Q
T

March 2002 www.xilinx.com 177
MicroBlaze Hardware Reference Guide 1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

OPB General Purpose Input/Output (GPIO) Specification
R

Programming
Model

Register Data Types and Organization
Registers in the GPIO are accessed as one of the following types:

• Byte (8 bits)

• Half word (2 bytes)

• Word (4 bytes)

Configuration

The following table shows GPIO configurations and access type.

The addresses of the GPIO registers when configured as a 32-bit OPB slave are shown in the
following table:

Table 1: GPIO Configuration and Access Type

Configuration Access Type

32-bit slave OPB peripheral Word

16-bit peripheral Half word

8-bit peripheral Byte

32-bit, 16-bit, or 8-bit peripheral All register accesses are on word boundaries to
conform to the OPB-IPIF register location convention

Table 2: GPIO Register Address Map (32-bit OPB)

Register
Address

(Hex) Size Type Description

GPIO_DATA 0x00 Word R/W GPIO Data Register

GPIO_TRI 0x04 Word R/W GPIO Three-state Register
178 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB General Purpose Input/Output (GPIO) Specification
R

The GPIO registers are organized as big-endian data. The bit and byte labeling for the big-
endian data types is shown in the following figure:

Registers of the GPIO
Information on the registers used in assembly language programming are described in this
section.

Figure 2: Big-Endian Data Types

Figure 3: GPIO Register Set

n n+1 n+2 n+3

0 1 2 3

MSByte LSByte

0 31

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n n+1

0 1

MSByte LSByte

0 15

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n

0

MSByte

0 7

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

Byte

Half word

Word

GPIO_DATA

GPIO_TRI

GPIO Data Register

GPIO Three-state Register
March 2002 www.xilinx.com 179
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB General Purpose Input/Output (GPIO) Specification
R

Address Map

GPIO Data Register (GPIO_DATA)

Description

GPIO Three-state Register (GPIO_TRI)

Description

Table 3: GPIO Register Address Map (32-bit OPB)

Register
Address

(Hex) Size Type Description

GPIO_DATA 0x00 Word R/W GPIO Data Register

GPIO_TRI 0x04 Word R/W GPIO Three-state Register

0 31

↑
GPIO_DATA

Table 4: GPIO_DATA Register

Bits Name Description Reset Value

0:31 GPIO_DATA GPIO Data

For I/O programmed as inputs:
R: reads value on input pin
W: no effect

For I/O programmed as outputs:
R: reads value in GPIO data register
W: writes value to GPIO data register
and output pin

0

0 31

↑
GPIO_TRI

Table 5: GPIO_TRI Register

Bits Name Description Reset Value

0:31 GPIO_TRI GPIO Three-state Control (Bit
Direction). Each I/O pin of the GPIO is
individually programmable as an input
or output. For each bit:

0 I/O pin configured as output
1 I/O pin configured as input

all bits = 1
180 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB General Purpose Input/Output (GPIO) Specification
R

Operation GPIO Operation
A write to the GPIO_DATA register causes the written data to appear on the GPIO I/O port for
I/Os that are configured as outputs. The GPIO_DATA register reads either the content of the
GPIO_DATA register (for I/Os configured as outputs), or the GPIO I/O port (for I/Os configured
as inputs).

The GPIO_TRI register configures the I/O as either input or output. Each bit of the I/O port has
a corresponding bit in the GPIO_TRI register. Each I/O bit can be individually configured as
input or output. If only inputs are required, the C_ALL_INPUTS parameter can be set to true. As
a result, the GPIO_TRI register and the read multiplexer are removed from the logic to reduce
resource utilization.

Implementation I/O Summary

Table 6: Summary of GPIO I/O (32b OPB interface)

Signal Interface I/O Description Page

OPB_Clk OPB I OPB Clock

OPB_Rst OPB I OPB Reset

OPB_ABus[0:31] OPB I OPB Address Bus

OPB_BE[0:3] OPB I OPB Byte Enables

OPB_DBus[0:31] OPB I OPB Data Bus

OPB_RNW OPB I OPB Read, Not Write

OPB_select OPB I OPB Select

OPB_seqAddr OPB I OPB Sequential Address

GPIO_DBus[0:31] OPB O GPIO Data Bus

GPIO_errAck OPB O GPIO Error Acknowledge

GPIO_retry OPB O GPIO Retry

GPIO_toutSup OPB O GPIO Timeout Suppress

GPIO_xferAck OPB O GPIO Transfer Acknowledge

GPIO_IO[0:31] Ext. I/O General Purpose Input/Outputs. Number of I/O bits is
configurable at FPGA configuration, direction of each I/O bit is
programmable at run-time.
March 2002 www.xilinx.com 181
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB General Purpose Input/Output (GPIO) Specification
R

MPD File Parameters
The opb_gpio.mpd (Microprocessor Peripheral Definition) file contains a list of the peripheral’s
parameters that are fixed at FPGA configuration time. The parameters are described in the
following table:

Parameterization
The following characteristics of the GPIO can be parameterized:

• Base address for the GPIO registers

• Width of OPB data bus attached to the peripheral

• Width of OPB address bus attached to the peripheral

• Number of GPIO bits

• I/Os are input-only or programmable as input or output

Table 7: MPD Parameters

Parameter Description Type

C_OPB_AWIDTH Width of the address bus attached to
the peripheral

integer

C_OPB_DWIDTH Width of the data bus attached to the
peripheral

integer

C_BASEADDR Indicates the base address of this
peripheral expressed as a
std_logic_vector

std_logic_vector
(0 to C_AWIDTH-1)

C_HIGHADDR Indicates the highest address occupied
by this peripheral expressed as a
standard logic vector

std_logic_vector
(0 to C_AWIDTH-1)

C_GPIO_WIDTH Width of the GPIO bus (number of
GPIO bits used)

integer

C_ALL_INPUTS Indicates that all I/O are configured as
inputs; results in lower resource
utilization if only inputs are needed

0: I/O are programmable as input or
output.
1: All I/O are inputs

integer
182 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Summary This document describes the specifications for a 32-bit free-running timebase and watchdog
timer core for the OPB bus. This document applies to the following peripherals:

Overview The TBWDT (TimeBase WatchDog Timer) is a 32-bit peripheral that attaches to the OPB (On-
chip Peripheral Bus), and has the following features:

Features
• OPB V2.0 bus interface with byte-enable support

• Supports 32-bit, 16-bit, and 8-bit bus interfaces

• Watchdog timer (WDT) with selectable timeout period and interrupt

• Configurable WDT enable: enable-once or enable-disable

• One 32-bit free-running timebase counter with rollover interrupt

Timebase WDT Organization
The TBWDT block diagram is shown in the following figure:

The TBWDT has the following characteristics:

• Consists of a free-running 32-bit timebase counter that is used for both general purpose
timing and the WDT facility

• The timebase counter always counts up from system reset and is read-only

• The WDT timeout interval is determined by which bit in the timebase is used as input to
the WDT state machine

• The WDT uses a dual-expiration architecture

Xilinx Embedded Processors: OPB Peripherals

 March 2002

OPB Timebase WDT Specification
R

opb_timebase_wdt v1.00a

Figure 1: Timebase/WDT Organization

TWCSR1

32b

WDT

TWCSR0

Control
 Reg

Control/
Status Reg

OPB Bus
TBR

Timebase
Clock
System Reset
Timebase Rollover Interrupt

WDT Interrupt
WDT Reset
March 2002 www.xilinx.com 183
MicroBlaze Hardware Reference Guide 1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

OPB Timebase WDT Specification
R

After one expiration of the timeout interval an interrupt is generated and the WDT state bit
is set to one in the status register. If the state bit is not cleared (by writing a 1 to the state
bit) before the next expiration of the timeout interval, a WDT reset is generated. A WDT
reset sets the WDT reset status bit in the status register so that the application code can
determine if the last system reset was a WDT reset.

• The WDT can only be disabled by writing to two distinct addresses, reducing the possibly
of inadvertently disabling the WDT in the application code

Programming
Model

Register Data Types and Organization
TBWDT registers are accessed as one of the following types:

• Byte (8 bits)

• Half word (2 bytes)

• Word (4 bytes)

Configuration

The following table shows TBWDT configurations and access type.

The addresses of the TBWDT registers when configured as a 32-bit OPB slave are shown in
the following table:

Table 1: TBWDT Configuration and Access Type

Configuration Access Type

32-bit slave OPB peripheral Word

16-bit peripheral Half word

8-bit peripheral Byte

32-bit, 16-bit, or 8-bit peripheral All register accesses are on word boundaries to
conform to the OPB-IPIF register location convention

Table 2: TBWDT Register Address Map

Register
Address

(Hex) Size Type Description

TCSR0 0x00 Word R/W Control/Status Register 0

TCSR1 0x04 Word W Control/Status Register 1 - state
is mirrored in TCSR0 for read

TBR 0x08 Word R Timebase Register
184 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Timebase WDT Specification
R

The TBWDT registers are organized as big-endian data. The bit and byte labeling for the big-
endian data types is shown in the following figure:

Registers of the Timebase / Watchdog Timer
Registers used in assembly language programming are described in this section.

Figure 2: Big-Endian Data Types

Figure 3: TBWDT Register Set

n n+1 n+2 n+3

0 1 2 3

MSByte LSByte

0 31

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n n+1

0 1

MSByte LSByte

0 15

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n

0

MSByte

0 7

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

Byte

Half word

Word

TWCSR0

TWCSR1

Control/Status Register 0

Control/Status Register 1

TBR Timebase Register
March 2002 www.xilinx.com 185
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Timebase WDT Specification
R

Address Map

Timebase Register (TBR)

The Timebase Register is the output of a free-running incrementing counter that clocks at the
input clock rate (no prescaling of the clock is done for this counter). This register is read-only
and is reset by the following:

• A system reset

• Enabling the WDT after power on reset

• Enabling the WDT after the WDT has been disabled (EWDT1 and EWDT2 must both be 0
to disable the WDT). The WDT is enabled when either EWDT1 or EWDT2 are set to 1.
Note that when the WDT mode is enable-once, the TBR can only be reset when the WDT
is first enabled.

Control/Status Register 0 (TCSR0)

Control/Status Register 0 contains the watchdog timer reset status, watchdog timer state, and
watchdog timer enables.

Table 3: TBWDT Register Address Map

Register
Address

(Hex) Size Type Description

TCSR0 0x00 Word R/W Control/Status Register 0

TCSR1 0x04 Word W Control/Status Register 1 - state
is mirrored in TCSR0 for read

TBR 0x08 Word R Timebase Register

0 31

↑
TBR

WRS EWDT1
↓ ↓

0 27 28 29 30 31

↑ ↑ ↑
TBR(0:27) WDS EWDT2

Table 4: Control/Status Register 0 (TCSR0)

Bits Name Description Reset Value

0:27 TBR(0:27) Timebase Register (Most significant
28 bits)

This read-only field contains the most
significant 28 bits of the timebase
register. The timebase register is
mirrored here so that a single read can
be used to obtain the count value and
the watchdog timer state if the upper
28 bits of the timebase provide
sufficient timing resolution.
186 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Timebase WDT Specification
R

28 WRS Watchdog Reset Status

Indicates the WDT reset signal was
asserted. This bit is not cleared by a
system reset so that it can be read after
a system reset to determine if the reset
was caused by a watchdog timeout.

Writing a 1 to this bit clears the
watchdog reset status bit. Writing a 0
to this bit has no effect.

0 WDT reset has not occurred
1 WDT reset has occurred

29 WDS Watchdog Timer State

Indicates the WDT period has expired.
The WDT_Reset signal will be
asserted if the WDT period expires
again before this bit is cleared by
software.

Writing a 1 to this bit clears the
watchdog timer state. Writing a 0 to this
bit has no effect.

0 WDT period has not expired
1 WDT period has expired, reset will
occur on next expiration

30 EWDT1 Enable Watchdog Timer (Enable 1)

This bit must be used in conjunction
with the EWDT2 bit in the TWCSR1
register. BOTH bits must be 0 to
disable the WDT.

0 Disable WDT function
1 Enable WDT function

0

31 EWDT2 Enable Watchdog Timer (Enable 2)

This bit must be used in conjunction
with the EWDT1 bit in the TCSR0
register to disable the WDT. BOTH bits
must be 0 to disable the WDT.

This bit is READ-ONLY in this register.
The value of EWDT2 can be modified
only in TWCSR1.

0 WDT function is disabled
1 WDT function is enabled

0

Table 4: Control/Status Register 0 (TCSR0) (Continued)

Bits Name Description Reset Value
March 2002 www.xilinx.com 187
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Timebase WDT Specification
R

Control/Status Register 1 (TCSR1)

Control/Status Register 1 contains the second Watch Dog Timer (WDT) enable bit.The WDT
enable must be cleared in both TCSR0 and TCSR2 to disable the WDT. If the WDT is
configured as enable-once, then the WDT cannot be disabled after it has been enabled.

Operation Timebase Operation
The timebase is a 32-bit up counter that is incremented by one on the rising edge of the clock
provided to the TBWDT. This counter is reset to zero when the Reset input is high or when the
WDT is enabled. The TBR contains the full timebase count value (32 bits). The TWCSR0
contains the most-significant 28 bits of the timebase count, as well as the WDT enable and
status bits. The timing resolution from the upper 28 bits of the timebase count is Tclk x 16 (Tclk
is the period of the input clock). As a result, a single access can be used to read the state of the
watchdog times, as well as a reduced resolution version of the timebase.

An interrupt signal is provided that pulses high for one clock period as the counter rolls over
from 0xFFFFFFFF to 0x00000000. This interrupt can be used by the software to keep track of
how many timebase rollovers have occurred.

WDT Operation
The WDT timeout interval is configured by a parameter to be 2WDT_CLOCKS clock cycles, where
WDT_CLOCKS is any integer from 8 to 31. The WDT interval is set at FPGA configuration time
and cannot be modified dynamically through a control register.

The state of the WDT is given by the WDS bit in the TWCSR0 register. If the WDT interval
expires while the WDS bit is 1, the WDT reset signal is asserted. An interrupt is provided when
the WDS bit is set so that the software can clear the bit before the second expiration of the
WDT. The WDS bit is cleared by writing a 1 to it. Writing a 0 to the WDS bit has no effect. The
WDT state diagram is shown in the following figure:

0 30 31

↑
EWDT2

Table 5: Control/Status Register 1 (TCSR1)

Bits Name Description Reset Value

0:30 Reserved

31 EWDT2 Enable Watchdog Timer (Enable 2)

This bit must be used in conjunction
with the EWDT1 bit in the TCSR0
register to disable the WDT. BOTH bits
must be 0 to disable the WDT.

This bit is WRITE-ONLY in this register.
The value of EWDT2 can be read back
only in TWCSR1.

0 WDT function is disabled
1 WDT function is enabled

0

188 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Timebase WDT Specification
R

Implementation I/O Summary

Figure 4: WDT State Diagram

Idle
WDT

expired
once

WDT
expired
twice

set WDS to 1

set WDT reset to 1

Reset
count = WDT interval

WDS cleared by software

generate WDT
interrupt

count = WDT interval

Reset

Table 6: Summary of Timebase WDT Core I/O

Signal Interface I/O Description Page

OPB_Clk OPB I OPB Clock

OPB_Rst OPB I OPB Reset

OPB_ABus[0:31] OPB I OPB Address Bus

OPB_BE[0:3] OPB I OPB Byte Enables

OPB_DBus[0:31] OPB I OPB Data Bus

OPB_RNW OPB I OPB Read, Not Write

OPB_select OPB I OPB Select

OPB_seqAddr OPB I OPB Sequential Address

TBWDT_DBus[0:31] OPB O TBWDT Data Bus

TBWDT_errAck OPB O TBWDT Error Acknowledge

TBWDT_retry OPB O TBWDT Retry

TBWDT_toutSup OPB O TBWDT Timeout Suppress

TBWDT_xferAck OPB O TBWDT Transfer Acknowledge

WDT_Reset Ext. O Watchdog Timer Reset. Asserted upon second expiration of the
WDT timeout interval.

Timebase_Interrupt Ext. O Timebase Rollover Interrupt. Asserted as a one clock period
wide pulse upon rollover of the timebase from 0xFFFFFFFF to
0x00000000.

WDT_Interrupt Ext. O Watchdog Timer Interrupt. Goes high and stays high until the
WDS bit is cleared in the TWCSR0 register.
March 2002 www.xilinx.com 189
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Timebase WDT Specification
R

MPD File Parameters
The opb_timebase_wdt.mpd (Microprocessor Peripheral Definition) file contains a list of the
peripheral’s parameters that are fixed at FPGA configuration time. The parameters are
described in the following table:

Device Utilization and Performance Benchmarks
The following table shows approximate resource utilization and performance benchmarks for
the OPB Timer/Counter. The estimates shown are not guaranteed and can vary with FPGA
family and speed grade, parameters selected for implementation, user timing constraints, and
implementation tool version. Only parameters that affect resource utilization are shown in the
following table.

Table 7: MPD Parameters

Parameter Description Type

C_WDT_INTERVAL Indicates the exponent for setting the
length of the WDT interval.

WDT interval = 2C_WDT_INTERVAL x Tclk

integer

C_WDT_ENABLE_
ONCE

Indicates WDT enable behavior.

0: WDT can be repeatedly enabled and
disabled via software.

1: WDT can only be enabled once (no
disable possible after initial enable).

integer

C_OPB_AWIDTH The width of the address bus attached
to the peripheral.

integer

C_OPB_DWIDTH The width of the data bus attached to
the peripheral.

integer

C_BASEADDR Indicates the base address of this
peripheral expressed as a
std_logic_vector.

std_logic_vector
(0 to C_AWIDTH-1)

C_HIGHADDR Indicates the highest address occupied
by this peripheral expressed as a
standard logic vector.

std_logic_vector
(0 to C_AWIDTH-1)

Table 8: OPB Timebase/WDT Performance and Resource Utilization Benchmarks
(Virtex-II 2V1000-5)

Parameter Values Device Resources fMAX
(MHz)

Address
Bits in

Decode

C_AWIDTH Slices Slice
Flip-Flops

4-input
LUTs

fMAX

24 32 111 63 155
190 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Timebase WDT Specification
R

Parameterization
The following characteristics of the TBWDT can be parameterized:

• Base address for the TBWDT registers

• Behavior of WDT enable: enable-once or enable-many

• WDT interval

• Future parameterization: Bus interface — 8-bit, 16-bit, or 32-bit. The internal architecture
of the watchdog timer/WDT remains the same across bus interface sizes
March 2002 www.xilinx.com 191
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Timebase WDT Specification
R

192 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Summary This document describes the specifications for a timer/counter core for the OPB bus. This
document applies to the following peripherals:

Overview The TC (Timer/Counter) is a 32-bit timer module that attaches to the OPB (On-chip Peripheral
Bus), and has the following features:

Features
• OPB V2.0 bus interface with byte-enable support

• Supports 32-bit bus interface

• Two programmable interval timers with interrupt, event generation, and event capture
capabilities

• Configurable counter width

• One Pulse Width Modulation (PWM) output

• Freeze input for halting counters during software debug

Timer/Counter Organization
The TC is organized as two identical timer modules. Each timer module has an associated
register (the Load Register) that is used to hold either the initial value for the counter for event
generation or a capture value, depending on the mode of the timer. The TC block diagram is
shown in the following figure:

Xilinx Embedded Processors: OPB Peripherals

March 2002

OPB Timer/Counter Specification
R

opb_timer v1.00b

Figure 1: Timer/Counter Organization

TCR0

TLR0

TCR1

TLR1

TCSR0 Load
Register

Load
Register

32b Counter 32b CounterTCSR1

Control/
Status

Control/
Status

CaptureTrig1CaptureTrig0

GenerateOut1GenerateOut0

OPB Bus

Interrupt Logic TC_Interrupt PWM0

OPB Bus
March 2002 www.xilinx.com 193
MicroBlaze Hardware Reference Guide 1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

OPB Timer/Counter Specification
R

The generate value is used to generate a single interrupt at the expiration of an interval, or a
continuous series of interrupts with a programmable interval. The capture value is the timer
value that has been latched on detection of an external event. The clock rate of the timer
modules is OPB_Clk (no prescaling of the clock is performed). All of the TC interrupts are
OR’ed together to generate a single external interrupt signal. The interrupt service routine
reads the control/status registers to determine the source of the interrupt.

Programming
Model

Timer Modes
You can use a Generate Mode, a Capture Mode, or a Pulse Width Modulation (PWM) Mode
with the two timer/counter modules.

Generate Mode

In Generate Mode, the value in the Load Register is loaded into the counter and the counter
begins to count (up or down, selectable by the UDT bit in TCSR) when it is enabled. On
transition of the carry out of the counter, the counter stops or automatically reloads the
generate value from the Load Register and continues counting (selectable by the ARHT bit in
TCSR). The TINT bit is set in TCSR and, if enabled, the external GenerateOut signal is driven
to 1 for one clock cycle. If enabled, the interrupt signal for the timer is driven to 1 for one clock
cycle. This mode is useful for generating repetitive interrupts or external signals with a specified
interval.

Characteristics

Generate Mode has the following characteristics:

• The value loaded into the Load Register is called the generate value.

• On startup, the generate value in the Load Register must be loaded into the counter by
setting the Load bit in the TCSR. This applies whether the counter is set up to Auto Reload
or Hold when the interval has expired. Setting the Load bit to ’1’ loads the counter with the
value in the Load Register. The Load bit must be cleared before the counter is enabled for
proper operation.

• When the ARHT bit (Auto Reload/Hold) is set to ’1’ and the counter rolls over from all ’1’s
to all ’0’s (when counting up), or from all ’0’s to all ’1’s (when counting down), the generate
value in the Load Register will be automatically reloaded into the counter and the counter
will continue to count. If the GenerateOut signal is enabled (bit GENT in the TCSR), an
output pulse will be generated (one clock period in width). This is useful for generating a
repetitive pulse train with a specified period.

• When the ARHT bit (Auto Reload/Hold) is set to ’0’ and the counter rolls over from all ’1’s
to all ’0’s (when counting up), or from all ’0’s to all ’1’s (when counting down), the counter
will hold at the current value and will not reload the generate value. If the generate out
signal is enabled (bit GENT in the TCSR), an output pulse will be generated (one clock
period in width). This is useful for a one-shot pulse that is to be generated after a specified
period of time.

• The counter can be set up to count either up or down (bit UDT in the TCSR). If the counter
is set up as a down counter, the generate value is the number of clocks in the timing
interval. The period of the GenerateOut signal is the generate value times the clock
period.

• When the counter is set to count down,
.

• When the counter is set to count up,
,

where MAX_COUNT is the maximum count value of the counter, such as 0xFFFFFFFF
for a 32-bit counter.

• The GenerateOout signals can be configured as high-true or low-true.

TIMING_INTERVAL TLRx 2+() OPB_CLOCK_PERIOD×=

TIMING_INTERVAL MAX_COUNT TLRx– 2+() OPB_CLOCK_PERIOD×=
194 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Timer/Counter Specification
R

Capture Mode

In Capture Mode, the value of the counter is stored in the Load Register when the external
capture signal is asserted. The TINT bit is also set in TCSR on detection of the capture event.
The counter can be configured as an up or down counter for this mode (selectable by the UDT
bit in TCSR). The ARHT bit controls whether the capture value is overwritten with a new
capture value before the previous TINT flag is cleared. This mode is useful for time tagging
external events while simultaneously generating an interrupt.

Characteristics

Capture Mode has the following characteristics:

• The capture signal can be configured to be low-true or high true.

• The capture signal is sampled within the TC with the OPB_Clk. The capture event is
defined as the transition on the sampled signal to the asserted state. For example, if the
capture signal is defined to be high-true, then the capture event is when the sampled
(synchronized to the OPB_Clk) signal transitions from ’0’ to ’1’.

• When the capture event occurs, the counter value is written to the Load Register. This
value is called the capture value.

• When the ARHT bit (Auto Reload/Hold) is set to ’0’ and the capture event occurs, the
capture value is written to the Load Register. The Load Register will hold this capture
value until the Load Register is read. If the Load Register is not read, subsequent capture
events will not update the Load Register and will be lost.

• When the ARHT bit (Auto Reload/Hold) is set to ’1’ and the capture event occurs, the
capture value is always written to the Load Register. Subsequent capture events will
update the Load Register and will overwrite the previous value, whether it has been read
or not.

• The counter can be set up to count either up or down (bit UDT in the TCSR).

Pulse Width Modulation (PWM) Mode

In PWM mode, two timer/counters are used as a pair to produce an output signal (PWM0) with
a specified frequency and duty factor. Timer0 sets the period and Timer1 sets the high time for
the PWM0 output.

Characteristics

PWM Mode has the following characteristics:

• The mode for both Timer0 and TImer1 must be set to Generate Mode (bit MDT in the
TCSR set to ’0’).

• The PWMA0 bit in TCSR0 and PWMB0 bit in TCSR1 must be set to ’1’ to enable PWM
mode.

• The GenerateOut signals must be enabled in the TCSR (bit GENT set to ’1’). The PWM0
signal is generated from the GenerateOut signals of Timer0 and Timer1, so these signals
must be enabled in both timer/counters.

• The assertion level of the GenerateOut signals for both timers in the pair must be set to ’1’.
This is done by setting C_GEN0_ASSERT and C_GEN1_ASSERT to ’1’.

• The counter can be set to count up or down.

Setting the PWM Period and Duty Factor

The PWM period is determined by the generate value in Timer0’s Load Register (TLR0). The
PWM high time is determined by the generate value in Timer1’s Load Register (TLR1). The
period and duty factor are calculated as follows:

When counters are configured to count up (UDT = ’0’):

PWM_PERIOD TLR0 2+() OPB_CLOCK_PERIOD×=

PWM_HIGH_TIME TLR1 2+() OPB_CLOCK_PERIOD×=
March 2002 www.xilinx.com 195
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Timer/Counter Specification
R

When counters are configured to count down (UDT = ’1’):

where MAX_COUNT is the maximum count value for the counter, such as 0xFFFFFFFF for a
32-bit counter.

Interrupts
The TC interrupt signals can be enabled or disabled with the ENIT bit in the TCSR. The
interrupt status bit (TINT) in the TCSR cannot be disabled and always reflects the current state
of the timer interrupt. In Generate Mode, a timer interrupt is caused by the counter rolling over
(the same condition used to reload the counter when ARHT is set to ’1’). In Capture Mode, the
interrupt event is the capture event. Characteristics of the interrupts are:

• Interrupt events can only occur when the timer is enabled. In Capture Mode, this prevents
interrupts from occurring before the timer is enabled.

• The interrupt signal goes high for one clock cycle when the interrupt condition is met and
the interrupt is enabled in the TCSR. The interrupt is asserted on the rising edge of the
interrupt signal.

• A single interrupt signal is provided. The interrupt signal is the OR of the interrupts from
the two counters. The interrupt service routine must poll the TCSR’s to determine the
source or sources of the interrupt.

• The interrupt status bit (TINT in the TCSR) can only be cleared by writing a ’1’ to it. Writing
a ’0’ to it has no effect on the bit. Since the interrupt condition is an edge (the counter
rollover or the capture event), it can cleared at any time and will not indicate an interrupt
condition until the next interrupt event.

Register Data Types and Organization
TC registers are accessed as one of the following types:

• Byte (8 bits)

• Half word (2 bytes)

• Word (4 bytes)

Configuration

The following table shows TC configurations and access type.

The addresses of the TC registers are shown in the following table:

Table 1: TC Configuration and Access Type

Configuration Access Type

32-bit slave OPB peripheral Word

Table 2: TC Register Address Map

Register
Address

(Hex) Size Type Description

TCSR0 0x00 Word R/W Control/Status Register 0

TLR0 0x04 Word R/W Load Register 0

TCR0 0x08 Word R Timer/Counter Register 0

PWM_PERIOD MAX_COUNT TLR0– 2+() OPB_CLOCK_PERIOD×=

PWM_HIGH_TIME MAX_COUNT TLR1– 2)+ OPB_CLOCK_PERIOD×(=
196 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Timer/Counter Specification
R

The TC registers are organized as big-endian data. The bit and byte labeling for the big-endian
data types is shown in the following figure:

TCSR1 0x10 Word R/W Control/Status Register 1

TLR1 0x14 Word R/W Load Register 1

TCR1 0x18 Word R Timer/Counter Register 1

Figure 2: Big-Endian Data Types

Table 2: TC Register Address Map

Register
Address

(Hex) Size Type Description

n n+1 n+2 n+3

0 1 2 3

MSByte LSByte

0 31

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n n+1

0 1

MSByte LSByte

0 15

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n

0

MSByte

0 7

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

Byte

Half word

Word
March 2002 www.xilinx.com 197
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Timer/Counter Specification
R

Register Descriptions

Load Register (TLR0-TLR1)

When the counter width has been configured as less than 32 bits, the Load Register value is
right-justified in TLR0 and TLR1. The least-significant counter bit is always mapped to Load
Register bit 31.

Timer/Counter Register (TCR0-TCR1)

When the counter width has been configured as less than 32 bits, the count value is right-
justified in TCR0 and TCR1. The least-significant counter bit is always mapped to
Timer/Counter Register bit 31.

Control/Status Register 0 (TCSR0)

Control/Status Register 0 contains the control and status bits for timer module 0.

0 31

↑
TLR0-TLR1

0 31

↑
TCR0-TCR1

ENALL T0INT ENIT0 ARHT0 GENT0 MDT0
↓ ↓ ↓ ↓ ↓ ↓

0 20 21 22 23 24 25 26 27 28 29 30 31

↑ ↑ ↑ ↑ ↑
PWMA0 ENT0 LOAD0 CAPT0 UDT0

Table 3: Control/Status Register 0 (TCSR0)

Bits Name Description Reset Value

0:20 Reserved

21 ENALL Enable All Timers

0 No effect on timers
1 Enable all timers (counters run)

This bit is mirrored in all control/status
registers and is used to enable all
counters simultaneously. Writing a ’1’
to this bit sets ENALL, ENT0, and
ENT1. Writing a ’0’ to this register
clears ENALL but has no effect on
ENT0 and ENT1.

0

198 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Timer/Counter Specification
R

22 PWMA0 Enable Pulse Width Modulation for
Timer0

0 Disable pulse width modulation
1 Enable pulse width modulation

PWM requires using Timer0 and
Timer1 together as a pair. Timer0 sets
the period of the PWM output, and
Timer1 sets the high time for the PWM
output. For PWM Mode, MDT0 and
MDT1 must be ’0’ and
C_GEN0_ASSERT and
C_GEN1_ASSERT must be ’1’.

0

23 TINT0 Timer0 Interrupt

Indicates that the condition for an
interrupt on this timer has occurred. If
the timer mode is capture and the timer
is enabled, this bit indicates a capture
has occurred. If the mode is generate,
this bit indicates the counter has rolled
over. Must be cleared by writing a ’1’.

Read:
0 No interrupt has occurred
1 Interrupt has occurred

Write:
0 No change in state of T0INT
1 Clear T0INT (clear to ’0’)

0

24 ENT0 Enable Timer0

0 Disable timer (counter halts)
1 Enable timer (counter runs)

0

25 ENIT0 Enable Interrupt for Timer0

Enables the assertion of the interrupt
signal for this timer. Has no effect on
the interrupt flag in TCSR0.

0 Disable interrupt signal
1 Enable interrupt signal

0

26 LOAD0 Load Timer0

0 No load
1 Loads timer with value in TLR0

0

Table 3: Control/Status Register 0 (TCSR0) (Continued)

Bits Name Description Reset Value
March 2002 www.xilinx.com 199
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Timer/Counter Specification
R

Control/Status Register 1 (TCSR1)

Control/Status Register 1 contains the control and status bits for timer module 1.

27 ARHT0 Auto Reload/Hold Timer0

When the timer is in Generate Mode,
this bit determines whether the counter
reloads the generate value and
continues running or holds at the
termination value. In Capture Mode,
this bit determines whether a new
capture trigger overwrites the previous
captured value or if the previous value
is held.

0 Hold counter or capture value
1 Reload generate value or overwrite
capture value

0

28 CAPT0 Enable External Capture Trigger
Timer0

0 Disables external capture trigger
1 Enables external capture trigger

0

29 GENT0 Enable External Generate Signal
Timer0

0 Disables external generate signal
1 Enables external generate signal

0

30 UDT0 Up/Down Count Timer0

0 Timer functions as up counter
1 Timer functions as down counter

0

31 MDT0 Timer0 Mode

See the Timer Modes section.

0 Timer mode is generate
1 Timer mode is capture

0

Table 3: Control/Status Register 0 (TCSR0) (Continued)

Bits Name Description Reset Value

ENALL T1INT ENIT1 ARHT1 GENT1 MDT1
↓ ↓ ↓ ↓ ↓ ↓

0 20 21 22 23 24 25 26 27 28 29 30 31

↑ ↑ ↑ ↑ ↑
PWMB0 ENT1 LOAD1 CAPT1 UDT1

Table 4: Control/Status Register 1 (TCSR1)

Bits Name Description Reset Value

0:20 Reserved
200 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Timer/Counter Specification
R

21 ENALL Enable All Timers

0 No effect on timers
1 Enable all timers (counters run)

This bit is mirrored in all control/status
registers and is used to enable all
counters simultaneously. Writing a ’1’
to this bit sets ENALL, ENT0, and
ENT1. Writing a ’0’ to this register
clears ENALL but has no effect on
ENT0 and ENT1.

0

22 PWMB0 Enable Pulse Width Modulation for
Timer1

0 Disable pulse width modulation
1 Enable pulse width modulation

PWM requires using Timer0 and
Timer1 together as a pair. Timer0 sets
the period of the PWM output, and
Timer1 sets the high time for the PWM
output. For PWM Mode, MDT0 and
MDT1 must be ’0’ and
C_GEN0_ASSERT and
C_GEN1_ASSERT must be ’1’.

0

23 TINT1 Timer1 Interrupt

Indicates that the condition for an
interrupt on this timer has occurred. If
the timer mode is capture and the timer
is enabled, this bit indicates a capture
has occurred. If the mode is generate,
this bit indicates the counter has rolled
over. Must be cleared by writing a ’1’.

Read:
0 No interrupt has occurred
1 Interrupt has occurred

Write:
0 No change in state of T1INT
1 Clear T1INT (clear to ’0’)

0

24 ENT1 Enable Timer1

0 Disable timer (counter halts)
1 Enable timer (counter runs)

0

25 ENIT1 Enable Interrupt for Timer1

Enables the assertion of the interrupt
signal for this timer. Has no effect on
the interrupt flag in TCSR1.

0 Disable interrupt signal
1 Enable interrupt signal

0

Table 4: Control/Status Register 1 (TCSR1) (Continued)

Bits Name Description Reset Value
March 2002 www.xilinx.com 201
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Timer/Counter Specification
R

Implementation I/O Summary

26 LOAD1 Load Timer1

0 No load
1 Loads timer with value in TLR1

0

27 ARHT1 Auto Reload/Hold Timer1

When the timer is in generate mode,
this bit determines whether the counter
reloads the generate value and
continues running or holds at the
termination value. In capture mode,
this bit determines whether a new
capture trigger overwrites the previous
captured value or if the previous value
is held until it is read.

0 Hold counter or capture value
1 Reload generate value or overwrite
capture value

0

28 CAPT1 Enable External Capture Trigger
Timer1

0 Disables external capture trigger
1 Enables external capture trigger

0

29 GENT1 Enable External Generate Signal
Timer1

0 Disables external generate signal
1 Enables external generate signal

0

30 UDT1 Up/Down Count Timer1

0 Timer functions as up counter
1 Timer functions as down counter

0

31 MDT1 Timer1 Mode

See the Timer Modes section.

0 Timer mode is generate
1 Timer mode is capture

0

Table 4: Control/Status Register 1 (TCSR1) (Continued)

Bits Name Description Reset Value

Table 5: Summary of Timer Core I/O

Signal Interface I/O Description

OPB_Clk OPB I OPB Clock

OPB_Rst OPB I OPB Reset

OPB_ABus[0:31] OPB I OPB Address Bus

OPB_BE[0:3] OPB I OPB Byte Enables

OPB_DBus[0:31] OPB I OPB Data Bus

OPB_RNW OPB I OPB Read, Not Write
202 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB Timer/Counter Specification
R

MPD File Parameters
The opb_timer.mpd (Microprocessor Peripheral Definition) file contains a list of the peripheral’s
parameters that are fixed at FPGA configuration time. The parameters are described in the
following table:

OPB_select OPB I OPB Select

OPB_seqAddr OPB I OPB Sequential Address

TC_DBus[0:31] OPB O TC Data Bus

TC_errAck OPB O TC Error Acknowledge

TC_retry OPB O TC Retry

TC_toutSup OPB O TC Timeout Suppress

TC_xferAck OPB O TC Transfer Acknowledge

CaptureTrig0 Ext. I Capture Trigger 0

CaptureTrig1 Ext. I Capture Trigger 1

GenerateOut0 Ext. O Generate Output 0

GenerateOut1 Ext. O Generate Output 1

PWM0 Ext. O Pulse Width Modulation Output 0

Interrupt Ext. O Interrupt

Freeze Ext. I Freeze Count Value

Table 5: Summary of Timer Core I/O

Signal Interface I/O Description

Table 6: MPD Parameters

Parameter Description Type

C_FAMILY FPGA family, one of virtex, virtexe,
virtex2, virtex2p, spartan2, or
spartan2e

string

C_COUNT_WIDTH The width in bits of the counters in the
OPB TImer/Counter

integer range 8 to 32

C_ONE_TIMER_
ONLY

0: Two timers are present
1: One timer is present (No PWM mode)

integer

C_TRIG0_ASSERT ’0’: CaptureTrig0 input is low-true
’1’: CaptureTrig0 input is high-true

std_logic

C_COUNT_WIDTH The width in bits of the counters integer

C_TRIG1_ASSERT ’0’: CaptureTrig1 input is low-true
’1’: CaptureTrig1 input is high-true

std_logic

C_GEN0_ASSERT ’0’: GenerateOut0 output is low-true
’1’: GenerateOut0 output is high-true

std_logic

C_GEN1_ASSERT ’0’: GenerateOut1 output is low-true
’1’: GenerateOut1 output is high-true

std_logic

C_OPB_AWIDTH The width in bits of the address bus
attached to the peripheral.

integer
March 2002 www.xilinx.com 203
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB Timer/Counter Specification
R

Device Utilization and Performance Benchmarks
The following table shows approximate resource utilization and performance benchmarks for
the OPB Timer/Counter. The estimates shown are not guaranteed and can vary with FPGA
family and speed grade, parameters selected for implementation, user timing constraints, and
implementation tool version. Only parameters that affect resource utilization are shown in the
following table:

Parameterization
The following characteristics of the TC can be parameterized:

• Base address for the TC registers

• Assertion level for CaptureTrig and GenerateOut signals (high-true or low-true)

• Future parameterization: number of timer/counter modules

C_OPB_DWIDTH The width in bits of the data bus
attached to the peripheral.

integer

C_BASEADDR Indicates the base address of this
peripheral expressed as a
std_logic_vector.

std_logic_vector
(0 to C_AWIDTH-1)

C_HIGHADDR Indicates the highest address occupied
by this peripheral expressed as a
standard logic vector.

std_logic_vector
(0 to C_AWIDTH-1)

Table 7: OPB Timer/Counter Performance and Resource Utilization Benchmarks
(Virtex-II 2V1000-5)

Parameter Values Device Resources fMAX
(MHz)

Address
Bits in

Decode

C_AWIDTH Slices Slice
Flip-Flops

4-input
LUTs

fMAX

4 32 238 254 130

8 32 245 258 130

16 32 253 260 131

24 32 261 260 130

Table 6: MPD Parameters (Continued)

Parameter Description Type
204 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Summary This document describes the specifications for a JTAG_UART core for the On-chip Peripheral
Bus (OPB). This document applies to the following peripherals:

Overview The JTAG_UART is a module that attaches to the OPB (On-chip Peripheral Bus), and has the
following features:

Features
• Mimics UART functionality to MicroBlaze but sends data over JTAG

• OPB V2.0 bus interface with byte-enable support

• Supports 8-bit bus interfaces

• One transmit and one receive channel (full duplex)

• 16-character transmit FIFO and 16-character receive FIFO

• Requires xmd or xmdterm to run on host for JTAG communication

• Able to reset system and MicroBlaze

• Able to assert break signals to MicroBlaze

JTAG_UART
Parameters

To allow you to obtain a JTAG_UART that is uniquely tailored for your system, certain features
can be parameterized in the JTAG_UART design. This allows you to configure a design that
only utilizes the resources required by your system, and operates with the best possible
performance. The features that can be parameterized in the Xilinx JTAG_UART design are
shown in Table 1.

Xilinx Embedded Processors: OPB Peripherals

March 2002

OPB JTAG_UART Specification
R

opb_jtag_uart v1.00b

Table 1: JTAG_UART Parameters

Feature/Description Parameter Name Allowable Values
Default
Value VHDL Type

JTAG_UART Registers
Base Address

C_BASEADDR Valid Address
Range(2)

None(1) std_logic_vector

JTAG_UART Registers
HIGH Address

C_HIGHADDR Valid Address
Range(2)

None(1) std_logic_vector

Target Family C_FAMILY Xilinx FPGA families virtex2 strings

OPB Data Bus Width C_OPB_DWIDTH 32 32 integer

OPBAddress Bus Width C_OPB_AWIDTH 8 - 32 32 integer

Notes:
1. Address range specified by C_BASEADDR and C_HIGHADDR must be a power of 2
2. No default value is specified for C_BASEADDR and C_HIGHADDR to insure that the actual value is set; if the value is not set, a

compiler error is generated. These generics must be a power of 2.
March 2002 www.xilinx.com 205
MicroBlaze Hardware Reference Guide 1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

OPB JTAG_UART Specification
R

JTAG_UART I/O
Signals

The I/O signals for the JTAG_UART are listed in Table 2.

Table 2: JTAG_UART I/O Signals

Signal Name Interface I/O Description

OPB_Clk OPB I OPB Clock

OPB_Rst OPB I OPB Reset

OPB_ABus[0:31] OPB I OPB Address Bus

OPB_BE[0:3] OPB I OPB Byte Enables

OPB_DBus[0:31] OPB I OPB Data Bus

OPB_RNW OPB I OPB Read, Not Write

OPB_select OPB I OPB Select

OPB_seqAddr OPB I OPB Sequential Address

JTAG_UART_DBus[0:31] OPB O JTAG_UART Data Bus

JTAG_UART_errAck OPB O JTAG_UART Error Acknowledge

JTAG_UART_retry OPB O JTAG_UART Retry

JTAG_UART_toutSup OPB O JTAG_UART Timeout Suppress

JTAG_UART_xferAck OPB O JTAG_UART Transfer Acknowledge

Interrupt Interrupt O JTAG_UART Interrupt

RX External I Receive Data

TX External O Transmit Data

Debug_SYS_Rst Internal O Reset signal to OPB V2.0

Debug_Rst Internal O Reset signal to MicroBlaze

Ext_BRK Internal 0 Break signal to MicroBlaze

Ext_NM_BRK Internal O Non-maskable break signal to MicroBlaze
206 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB JTAG_UART Specification
R

JTAG_UART
Address Map
and Register
Descriptions

Register Data Types and Organization
Registers in the JTAG_UART are accessed as one of three types: byte (8 bits), halfword (2
bytes), and word (4 bytes). All register accesses are on word boundaries to conform to the
OPB-IPIF register location convention. The addresses of the JTAG_UART registers are shown
in the Address Map section.

The JTAG_UART registers are organized as big-endian data. The bit and byte labeling for the
big-endian data types is shown in Figure 1.

Registers of the JTAG_UART
Information on the following registers used in assembly language programming are described
in this section.

Figure 1: Big-Endian Data Types

Figure 2: JTAG_UART Register Set

n n+1 n+2 n+3

0 1 2 3

MSByte LSByte

0 31

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n n+1

0 1

MSByte LSByte

0 15

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n

0

MSByte

0 7

MSBit LSBit

Byte address

Byte label

Byte significance

Bit label

Bit significance

Byte

Halfword

Word

Receive FIFO

Transmit FIFO

Status

Control

Read character from Receive FIFO

Write character into Transmit FIFO

Read from Status Register

Write to Control Register
March 2002 www.xilinx.com 207
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB JTAG_UART Specification
R

Status Register (STATREG)

The Status register contains the status of the receive and transmit FIFO, if interrupts are
enabled, and if there are any errors.

Table 3: Status Register

Bits Name Description Reset Value

0-26 Reserved Not used 0

27 INTR_ENABLED Interrupts is enabled

Indicates that interrupts is enabled

0 Interrupt is disabled
1 Interrupt is enabled

0

28 TX_FIFO_FULL Transmit FIFO is full

Indicates if the transmit FIFO is full.

0 Transmit FIFO is not full
1 Transmit FIFO is full

29 TX_FIFO_EMPTY Transmit FIFO is empty

Indicates if the transmit FIFO is empty.

0 Transmit FIFO is not empty
1 Transmit FIFO is empty

30 RX_FIFO_FULL Receive FIFO is full

Indicates if the receive FIFO is full.

0 Receive FIFO is not full
1 Receive FIFO is full

31 RX_FIFO_VALID_DAT
A

Receive FIFO is has valid data

Indicates if the receive FIFO has valid
data.

0 Receive FIFO is empty
1 Receive FIFO has valid data
208 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

OPB JTAG_UART Specification
R

Control Register (CTRL_REG)

The Control register contains the control of the JTAG_UART.

Address Map
JTAG_UART_BASE_ADDRESS + 0: Read from Receive FIFO

JTAG_UART_BASE_ADDRESS + 4: Write to transmit FIFO

JTAG_UART_BASE_ADDRESS + 8: Read from Status Register

JTAG_UART_BASE_ADDRESS + 12: Write to Control Register

Interrupts
If interrupts are enabled, an interrupt is generated when one of the following conditions is true:

1. When there exists any valid character in the receive FIFO, the interrupt stays active until the
receive FIFO is empty

2. When the transmit FIFO goes from not empty to empty, such as when the last character in
the transmit FIFO is transmitted, the interrupt is only active one clock cycle.

Table 4: Control Register (CTRL_REG)

Bits Name Description Reset Value

0-26 Reserved Not used 0

27 ENABLE_INTR Enable Interrupt for the JTAG_UART

0 Disable interrupt signal
1 Enable interrupt signal

0

28-29 Reserved Not used 0

30 RST_RX_FIFO Reset/Clear the receive FIFO

When written to with a ’1’ the receive
FIFO is cleared.

0 Do nothing

1 Clear the receive FIFO

0

31 RST_TX_FIFO Reset/Clear the transmit FIFO

When written to with a ’1’ the transmit
FIFO is cleared.

0 Do nothing

1 Clear the transmit FIFO

0

March 2002 www.xilinx.com 209
MicroBlaze Hardware Reference Guide 1-800-255-7778

OPB JTAG_UART Specification
R

Design
Implementation

Device Utilization and Performance Benchmarks
The following table shows approximate resource utilization and performance benchmarks for
the OPB JTAG_UART. The estimates shown are not guaranteed and can vary with FPGA
family and speed grade, implementation parameters, user timing constraints, and
implementation tool version. Only parameters that affect resource utilization are shown in the
following table.

Table 5: OPB JTAG_UART Performance and Resource Utilization Benchmarks (Virtex-
II 2V1000-5)

Parameter
Values

Device
Resources

fMAX
(MHz)

Address
Bits in

Decode

C_AW
IDTH

Flip-
Flops

4-input
LUTs

fMAX

24 32
210 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

R

Appendix A: MicroBlaze Endianness

This chapter describes big-endian and little-endian data objects and how to use little-
endian data with the big-endian MicroBlaze soft processor. This chapter includes the
following sections:

• “Origin of Endian”
• “Definitions”
• “Bit Naming Conventions”
• “Data Types and Endianness”
• “VHDL Example”

Origin of Endian
The terms Big-Endian and Little-Endian come from Part I, Chapter 4, of Jonathan Swift's
Gulliver’s Travels. Here is the complete passage, from the edition printed in 1734 by George
Faulkner in Dublin.

. . . our Histories of six Thousand Moons make no Mention of any other Regions, than the two great
Empires of Lilliput and Blefuscu. Which two mighty Powers have, as I was going to tell you, been
engaged in a most obstinate War for six and thirty Moons past. It began upon the following
Occasion. It is allowed on all Hands, that the primitive Way of breaking Eggs before we eat them,
was upon the larger End: But his present Majesty’s Grand-father, while he was a Boy, going to eat
an Egg, and breaking it according to the ancient Practice, happened to cut one of his Fingers.
Whereupon the Emperor his Father, published an Edict, commanding all his Subjects, upon great
Penalties, to break the smaller End of their Eggs. The People so highly resented this Law, that our
Histories tell us, there have been six Rebellions raised on that Account; wherein one Emperor lost his
Life, and another his Crown. These civil Commotions were constantly fomented by the Monarchs of
Blefuscu; and when they were quelled, the Exiles always fled for Refuge to that Empire. It is
computed that eleven Thousand Persons have, at several Times, suffered Death, rather than submit
to break their Eggs at the smaller End. Many hundred large Volumes have been published upon this
Controversy: But the Books of the Big-Endians have been long forbidden, and the whole Party
rendered incapable by Law of holding Employments. During the Course of these Troubles, the
Emperors of Blefuscu did frequently expostulate by their Ambassadors, accusing us of making a
Schism in Religion, by offending against a fundamental Doctrine of our great Prophet Lustrog, in
the fifty-fourth Chapter of the Brundrecal, (which is their Alcoran.) This, however, is thought to be
a mere Strain upon the text: For the Words are these; That all true Believers shall break their Eggs
at the convenient End: and which is the convenient End, seems, in my humble Opinion, to be left to
every Man’s Conscience, or at least in the Power of the chief Magistrate to determine. Now the Big-
Endian Exiles have found so much Credit in the Emperor of Blefuscu’s Court; and so much private
Assistance and Encouragement from their Party here at home, that a bloody War has been carried on
between the two Empires for six and thirty Moons with various Success; during which Time we
have lost Forty Capital Ships, and a much greater Number of smaller Vessels, together with thirty
March 2002 www.xilinx.com 211
MicroBlaze Hardware Reference Guide 1-800-255-7778

Appendix : Appendix A: MicroBlaze Endianness
R

thousand of our best Seamen and Soldiers; and the Damage received by the Enemy is reckoned to be
somewhat greater than ours. However, they have now equipped a numerous Fleet, and are just
preparing to make a Descent upon us: and his Imperial Majesty, placing great Confidence in your
Valour and Strength, hath commanded me to lay this Account of his Affairs before you.

Definitions
Data are stored or retrieved in memory, in byte, half word, word, or double word units.
Endianness refers to the order in which data are stored and retrieved. Little-endian
specifies that the least significant byte is assigned the lowest byte address. Big-endian
specifies that the most significant byte is assigned the lowest byte address.

Note Endianness does not affect single byte data.

Bit Naming Conventions
The MicroBlaze architecture uses a bus and register bit naming convention in which the
most significant bit (MSB) name incorporates zero (‘0’). As the significance of the bits
decreases across the bus, the number in the name increases linearly so that a 32-bit vector
has a least significant bit (LSB) name equal to 31. Other Xilinx interfaces such as the PCI
Core use the opposite convention in which a name with a ‘0’ represents the LSB vector
position.

Data Types and Endianness
Hardware supported data types for MicroBlaze are word, half word, and byte. The data
organization for each type is shown in the following tables.

Table 0-1 Word Data Type

Byte address n n+1 n+2 n+3

Byte label 0 1 2 3

Byte significance MSByte LSByte

Bit label 0 31

Bit significance MSBit LSBit

Table 0-2 Half Word Data Type

Byte address n n+1

Byte label 0 1

Byte significance MSByte LSByte

Bit label 0 15

Bit significance MSBit LSBit

Table 0-3 Byte Data Type

Byte address n

Byte label 0

Byte significance MSByte

Bit label 0 7

Bit significance MSBit LSBit
212 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Data Types and Endianness
R

The following C language structure includes various scalars and character strings. The
comments indicate the value assumed to be in each structure element. These values show
how the bytes comprising each structure element are mapped into storage.

struct {
int a; /* 0x1112_1314 word */
long long b; /* 0x2122_2324_2526_2728 double word */
char *c; /* 0x3132_3334 word */
char d[7]; /* ’A’,’B’,’C’,’D’,’E’,’F’,’G’ array of bytes */
short e; /* 0x5152 halfword */
int f; /* 0x6162_6364 word */
} s;

C structure mapping rules permit the use of padding (skipped bytes) to align scalars on
desirable boundaries. The structure mapping examples show each scalar aligned at its
natural boundary. This alignment introduces padding of four bytes between a and b, one
byte between d and e, and two bytes between e and f. The same amount of padding is
present in both big-endian and little-endian mappings.

Note For the MicroBlaze core, all operands in the ALU and GPRs, and all pipeline
instructions are big-endian.

The big-endian mapping of “struct” is shown in the following table. (The data is
highlighted in the structure mappings). Hexadecimal addresses are below the data stored
at the address. The contents of each byte, as defined in the structure, are shown as a
number (hexadecimal) or character (for the string elements).

Table 0-4 Big-endian Mapping

11
0x00

12
0x01

13
0x02

14
0x03 0x04 0x05 0x06 0x07

21
0x08

22
0x09

23
0x0A

24
0x0B

25
0x0C

26
0x0D

27
0x0E

28
0x0F

31
0x10

32
0x11

33
0x12

34
0x13

‘A’
0x14

‘B’
0x15

‘C’
0x16

‘D’
0x17

‘E’
0x18

‘F’
0x19

‘G’
0x1A 0x1B

51
0x1C

52
0x1D 0x1E 0x1F

61
0x20

62
0x21

63
0x22

64
0x23 0x24 0x25 0x26 0x27

Table 0-5 Little-endian Mapping

14
0x00

13
0x01

12
0x02

11
0x03 0x04 0x05 0x06 0x07

28
0x08

27
0x09

26
0x0A

25
0x0B

24
0x0C

23
0x0D

22
0x0E

21
0x0F

34
0x10

33
0x11

32
0x12

31
0x13

‘A’
0x14

‘B’
0x15

‘C’
0x16

‘D’
0x17

‘E’
0x18

‘F’
0x19

‘G’
0x1A 0x1B

52
0x1C

51
0x1D 0x1E 0x1F

64
0x20

63
0x21

62
0x22

61
0x23 0x24 0x25 0x26 0x27
March 2002 www.xilinx.com 213
MicroBlaze Hardware Reference Guide 1-800-255-7778

Appendix : Appendix A: MicroBlaze Endianness
R

VHDL Example

BRAM – LMB Example
LMB uses big-endian byte addressing, while the BRAM uses little-endian byte addressing.
To translate data between the two busses, swap the data and address bytes.

Interface Between BRAM and MicroBlaze
entity Local_Memory is
 port (
 Clk : in std_logic;
 Reset : in boolean;

 -- Instruction Bus
 Instr_Addr : in std_logic_vector(0 to 31);
 Instr : out std_logic_vector(0 to 31);
 IFetch : in std_logic;
 I_AS : in std_logic;
 IReady : out std_logic;

 -- ports to "Decode_I"
 Data_Addr : in std_logic_vector(0 to 31);
 Data_Read : out std_logic_vector(0 to 31);
 Data_Write : in std_logic_vector(0 to 31);
 D_AS : in std_logic;
 Read_Strobe : in std_logic;
 Write_Strobe : in std_logic;
 DReady : out std_logic;
 Byte_Enable : in std_logic_vector(0 to 3)
);

end Local_Memory;

architecture IMP of Local_Memory is

BRAM Component Declaration (little-endian)
 component mem_dp_0 is
 port (
 addra : in std_logic_vector(9 downto 0);
 addrb : in std_logic_vector(9 downto 0);
 clka : in std_logic;
 clkb : in std_logic;
 dinb : in std_logic_vector(7 downto 0);
 douta : out std_logic_vector(7 downto 0);
 doutb : out std_logic_vector(7 downto 0);
 web : in std_logic);
 end component mem_dp_0;

Swap BRAM Little-endian Data to Big-endian
Swap_BE_and_LE_order : process (....)
begin
 for I in addra’range loop
 addra(I) <= Instr_Addr(29-I);
 end loop;
 for I in addrb’range loop
 addrb(I) <= Data_Addr(29-I);
214 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

VHDL Example
R

 end loop;
 for I in 0 to 3 loop
 for J in 0 to 7 loop
 dinb(I*8+J) <= Data_Write((3-I)*8+(7-J));
 Instr((3-I)*8+(7-J)) <= douta(I*8+J);
 Data_Read((3-I)*8+(7-J)) <= doutb(I*8+J);
 end loop;
 end loop;
 end process Swap_BE_and_LE_order;

BRAM Instantiation
mem_dp_0_I : mem_dp_0
port map (

addra=>addra, --[IN std_logic_VECTOR(9 downto 0)]
addrb=>addrb, --[IN std_logic_VECTOR(9 downto 0)]
clka=>Clk, --[IN std_logic]
clkb=>Clk, --[IN std_logic]
dinb=>dinb(31 downto 24) --[IN std_logic_VECTOR(7 downto 0)]
douta=>douta(31 downto 24), --[OUT std_logic_VECTOR(7 downto 0)]
doutb => doutb(31 downto 24), --[OUT std_logic_VECTOR(7 downto 0)]
web=>we(0)); --[IN std_logic]

BRAM – OPB Example
OPB uses big-endian byte addressing, while the BRAM uses little-endian byte addressing.
To translate data between the two buses, swap the data and address bytes.

Interface Between BRAM and MicroBlaze
library IEEE;
use IEEE.std_logic_1164.all;

entity OPB_BRAM is
 generic (
 C_BASEADDR : std_logic_vector(0 to 31) := X"B000_0000";
 C_NO_BRAMS : natural := 4; -- Can be 4,8,16,32 only
 C_VIRTEXII : boolean := true
);
 port (
 -- Global signals
 OPB_Clk : in std_logic;
 OPB_Rst : in std_logic;

 -- OPB signals
 OPB_ABus : in std_logic_vector(0 to 31);
 OPB_BE : in std_logic_vector(0 to 3);
 OPB_RNW : in std_logic;
 OPB_select : in std_logic;
 OPB_seqAddr : in std_logic;
 OPB_DBus : in std_logic_vector(0 to 31);

 OPB_BRAM_DBus : out std_logic_vector(0 to 31);
 OPB_BRAM_errAck : out std_logic;
 OPB_BRAM_retry : out std_logic;
 OPB_BRAM_toutSup : out std_logic;
 OPB_BRAM_xferAck : out std_logic;
March 2002 www.xilinx.com 215
MicroBlaze Hardware Reference Guide 1-800-255-7778

Appendix : Appendix A: MicroBlaze Endianness
R

 -- OPB_BRAM signals (other port)
 BRAM_Clk : in std_logic;
 BRAM_Addr : in std_logic_vector(0 to 31);
 BRAM_WE : in std_logic_vector(0 to 3);
 BRAM_Write_Data : in std_logic_vector(0 to 31);
 BRAM_Read_Data : out std_logic_vector(0 to 31)
);

end entity OPB_BRAM;

architecture IMP of OPB_BRAM is

BRAM Component Declaration (little-endian)
component RAMB16_S9_S9
 port (
 DIA : in std_logic_vector (7 downto 0);
 DIB : in std_logic_vector (7 downto 0);
 DIPA : in std_logic_vector (0 downto 0);
 DIPB : in std_logic_vector (0 downto 0);
 ENA : in std_ulogic;
 ENB : in std_ulogic;
 WEA : in std_ulogic;
 WEB : in std_ulogic;
 SSRA : in std_ulogic;
 SSRB : in std_ulogic;
 CLKA : in std_ulogic;
 CLKB : in std_ulogic;
 ADDRA : in std_logic_vector (10 downto 0);
 ADDRB : in std_logic_vector (10 downto 0);
 DOA : out std_logic_vector (7 downto 0);
 DOB : out std_logic_vector (7 downto 0);
 DOPA : out std_logic_vector (0 downto 0);
 DOPB : out std_logic_vector (0 downto 0));
 end component;

Swap BRAM Little-endian Data to Big-endian

 BE_to_LE : for I in 0 to 31 generate
 opb_dbus_le(I) <= OPB_DBus(31-I);
 bram_write_data_le(I) <= BRAM_Write_Data(31-I);
 BRAM_Read_Data(I) <= bram_Read_Data_LE(31-I);
 opb_ABus_LE(I) <= OPB_ABus(31-I);
 bram_Addr_LE(I) <= BRAM_Addr(31-I);
 end generate BE_to_LE;

BRAM Instantiation
All_Brams : for I in 0 to C_NO_BRAMS-1 generate

By_8 : if (C_NO_BRAMS = 4) generate

RAMB16_S9_S9_I : RAMB16_S9_S9
port map (
DIA => opb_DBUS_LE(((I+1)*8-1) downto I*8), --[in std_logic_vector(7 downto 0)]
DIB =>bram_Write_Data_LE(((I+1)*8)-1 downto I*8), --[in std_logic_vector (downto 0)]
DIPA => null_1, -- [in std_logic_vector (7 downto 0)]
DIPB => null_1, -- [in std_logic_vector (7 downto 0)]
ENA => ’1’, -- [in std_ulogic]
ENB => ’1’, -- [in std_ulogic]
WEA => opb_WE(I), -- [in std_ulogic]
WEB => BRAM_WE(I), -- [in std_ulogic]
216 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

VHDL Example
R

SSRA => ’0’, -- [in std_ulogic]
SSRB => ’0’, -- [in std_ulogic]
CLKA => OPB_Clk, -- [in std_ulogic]
CLKB => BRAM_Clk, -- [in std_ulogic]
ADDRA => opb_ABus_LE(12 downto 2), -- [in std_logic_vector (10 downto 0)]
ADDRB => bram_Addr_LE(12 downto 2), -- [in std_logic_vector (10 downto 0)]
DOA=>opb_BRAM_DBus_LE_I(((I+1)*8-1)downto I*8),--[out std_logic_vector(7 downto 0)]
DOB =>bram_Read_Data_LE(((I+1)*8-1) downto I*8),--[out std_logic_vector(7 downto 0)]
DOPA => open, -- [out std_logic_vector (0 downto 0)]
DOPB => open); -- [out std_logic_vector (0 downto 0)]
end generate By_8;
March 2002 www.xilinx.com 217
MicroBlaze Hardware Reference Guide 1-800-255-7778

Appendix : Appendix A: MicroBlaze Endianness
R

218 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

R

Appendix B: JTAG Connector

This appendix provides information on the standard 10-pin JTAG connector that can be
used in a MicroBlaze system.

The following figure shows the JTAG connector pins and signal names

Figure 0-1 JTAG Connector

The following table lists the pins, signal names, and signal functions for the connector.

1
3
5
7
9

2
4
6
8

10

KEY/JTAG RESET

GND

OSC

TRST

POD PWR 3.3v

TMS

TCLK

STOPPED

TSI/DFPC

TSO/DTOPC

Target Board - Component Side

Pin 1,
Red Wire

Tool Cable

To
Target

10 pin header,
0.1" spacing

Table 0-1 JTAG Connector Signals

Pin Number Signal Name Function

1 KEY/JTAG REST This signal is normally not used, and often the female part
has a plug in the Pin 1 hole as the pin on the target board
is cut off. Alternatively, this pin can be used for a JTAG
state machine reset if needed.

3 GND Digital signal ground.

5 OSC Oscillator signal; normally not used, but can generate a
clock up to 100 MHz.

7 TRST Target reset. This signal is normally an open collector and
active low.
March 2002 www.xilinx.com 219
MicroBlaze Hardware Reference Guide 1-800-255-7778

Appendix : Appendix B: JTAG Connector
R

9 POD POWER 3.3V This pin is used to supply the buffers in the tool with 3.3
or other low voltage. By powering the buffers with a target
voltage, it is possible to interface to many different logic
levels. The power flows from the target board to the tool
to power only the buffers that drive the JTAG signals to the
target board.

2 TMS The JTAG TMS line that is used to control the JTAG tap
state machine.

4 TCLK The JTAG clock.

6 STOPPED Signal normally not used, but the tool can optionally
detect that the target system is not running if this signal is
held high.

8 TSI/DFPC JTAG data input to the target silicon from the tool.

10 TSO/DTOPC The JTAG TSO signal that is an output from the target
board silicon to the tool.

Table 0-1 JTAG Connector Signals

Pin Number Signal Name Function
220 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

Index
A
address pipelining 41
addressable registers 70
Addressing 88
aligned transfers 35
ARB2BUS Data Mux 80
Arbitration Logic 80
ARM 93
Auto vectoring interrupt

schemes 92

B
BEIF 39
big-endian 211
Black Boxes 57
Block RAM 139
BRAM 139
Branches 9
bus locking 41
Bus Parking 89
byte-enable devices 34

C
cache fill 41
capture mode 195
Clear Interrupt Enables (CIE) 95,

105
Clock and Power Management 89
combinational grant outputs 64
compare mode 194
CONFIGURATION 46
Control Register 71
Control Register (CTRL_REG) 148,

209
Control Register Bit Definitions 72
Control Register Logic 76
Control/Status Register 0

(TCSR0) 186, 198
Control/Status Register 1

(TCSR1) 188, 200
conversion cycles 34, 39
CoreConnec 33

D
DCR 40
Decode 8

defining local memory size 47
defining memory size 47
Delay Slots 9
Device Utilization 87
Dynamic bus sizing 34
dynamic bus sizing 33
dynamic priority arbitration 65

E
edge generation schemes 94
EMC 113
EMC Control Register

(EMCCR) 119
EMC I/O signals 116
EMC parameters 114
Endianness 211
Exceptions 11
Execute 8
External Memory Controller 113

F
Fetch 8
fixed length burst 41
fixed priority arbitration 65
Flash Memory Controller 133

G
General Purpose

Input/Output 177
General Purpose Registers (R0-

R31) 6
Generics (Parameters) 110
GPIO (General Purpose

Input/Output) 177
GPIO Organization 177
GPIO Register Address Map 178,

180
gpio.mpd (Microprocessor Periph-

eral Definition) 182
GPIO_DATA Register 180
GPIO_OE Register 180
Grant Outputs 89

H
Hard vector interrupt schemes 92

HW_VER 46

I
I/O Signals 88
I/O Summary 109
IBM PowerPC 405GP Universal In-

terrupt Controller (UIC) 93
IDT71V416S 126, 127
INSTANCE 46
Instruction Set Nomenclature 4
Intel 8051 92
internal signals 47
Interrupt Acknowledge Register

(IAR) 95, 103
interrupt detection and request

generation 94
Interrupt Enable Register (IER) 102
Interrupt Pending Register

(IPR) 95, 101
interrupt signal 188
interrupt signals 47
Interrupt Status Register (ISR) 95,

100
Interrupt Vector Register (IVR) 106
Interrupts 10

J
JTAG connector 219
JTAG_UART 205

L
legacy devices 34
level sensitive interrupts 94
little-endian 211
LMB 40
LMB Bus Definition 26
LMB Bus Signals 26
Load/Store Architecture 9
Local Memory Bus (LMB) 13

M
Machine Status Register 7
Master Enable Register (MER) 95,

107
memory controller operation 122
March 2002 www.xilinx.com 221
MicroBlaze Hardware Reference Guide 1-800-255-7778

R

Memory Data Types and
Organization 119

MHS 43, 49
MHS example 44
MHS signal options 46
MicroBlaze Core Block Diagram 3
MicroBlaze™ 3
Microprocessor Hardware

Specification 43, 49
Microprocessor Peripheral Defini-

tion (MPD) File 51
Microprocessor System Definition

(MSD) format 43, 49
MIPS 92
mixed systems 39
Motorola 68332 92

O
OCM 40
On-chip Peripheral Bus (OPB) 13
On-Chip Peripheral Bus (OPB)

Arbiter 63
OPB 33, 40
OPB Arbiter Block Diagram 75
OPB Arbiter I/O Signals 68
OPB Arbitration Protocol 64
OPB BRAM 139
OPB Bus Configuration 23
OPB General Purpose

Input/Output 177
OPB interface 94
OPB JTAG_UART 205
OPB Master Inputs 55
OPB Master Outputs 55, 56
OPB Serial Peripheral Interface 151
OPB Slave Inputs 56
OPB Slave Interface (IPIF) 76
OPB Slave Outputs 55
OPB Timebase WDT 183
OPB Timer/Counter 193
OPB UART Lite 143
OPB V2.0 devices 34
opb_arbiter 63
opb_bram 139
opb_gpio 177
opb_intc 91
opb_jtag_uart 205
opb_memcon 113
opb_spi 151
opb_timebase_wdt 183
opb_timer 193
opb_uartlite 143
opb_zbt_controller 133

P
PAO (Peripheral Analyze

Order) 49
Parameter - Port Dependencies 69
Parameter Combinations 68
Parameterization 109
Performance Benchmarks 87
Peripheral Analyze Order (PAO)

File 61
Peripheral Placement 15
Pipeline Architecture 8
Platform Generator 49, 50
PLB 40
power signals 48
PRIORITY 46
Priority Level Nomenclature 89
Priority Register 70
Priority Register Logic 76
Priority Registers 74
Program Counter (PC) 7
programmer registers 94

R
read steering 30
Register Data Types and

Organization 97
Register Definitions 88
Registered grant outputs 64
retry 41

S
Scalable Datapath 57
Scan Test Chains 89
Serial Peripheral Interface 151
Set Interrupt Enables (SIE) 95, 104
Simple IntC Registers 98
Simple Interrupt Controller 91
Special Purpose Registers 7
SPI 151
Status Register (STATREG) 145, 208
StrataFlash 129, 130, 131

T
target word first 41
TBWDT (TimeBase WatchDog

Timer) 183
TC (Timer/Counter) 193
Timebase Operation 188
Timebase Register (TBR) 186
timebase_wdt.mpd (Microproces-

sor Peripheral

Definition) 190
timeout 41
timer.mpd (Microprocessor Periph-

eral Definition) 203
TYPE 46, 47
Type A instructions 4
Type B instructions 4

U
UART Lite 143

V
variable burst 41

W
Watchdog Timer 86
WDT timeout interval 183
write steering 30

Z
ZBT Controller 133
Zilog Z80 92
222 www.xilinx.com March 2002
1-800-255-7778 MicroBlaze Hardware Reference Guide

	Contents
	Figures
	Tables
	Overview of MicroBlaze Embedded Systems
	Architecture Support
	MicroBlaze Soft Processor Core
	Bus Interconnects
	OPB Peripherals

	The MicroBlaze Architecture
	Summary
	Overview
	Features

	Instructions
	Registers
	General Purpose Registers (R0-R31)
	Special Purpose Registers

	Pipeline
	Pipeline Architecture
	Branches

	Load/Store Architecture
	Interrupts, Exceptions, and Breaks
	Interrupts
	Exceptions
	Breaks

	MicroBlaze Bus Interfaces
	Summary
	Overview
	Features

	Bus Configurations
	Typical Peripheral Placement

	Bit and Byte Labeling
	Core I/O
	Bus Organization
	OPB Bus Configuration
	LMB Bus Definition
	LMB Bus Operations
	Read and Write Data Steering

	Implementation
	Parameterization

	OPB Usage in Xilinx FPGAs
	Summary
	Overview
	Xilinx OPB Usage
	OPB Options
	Xilinx OPB Devices
	Specifications for OPB Usage in Xilinx-developed OPB Devices

	Legacy OPB Devices
	Mixed Systems

	OPB Usage Notes
	OPB Comparison
	Revision History

	Microprocessor Hardware Specification (MHS) Format
	Summary
	Overview
	MHS Syntax
	Comments
	Peripheral Type
	Assignment Type
	Ending a Peripheral Definition
	MHS Example

	MHS Peripheral Options
	CONFIGURATION Option
	HW_VER Option
	INSTANCE Option

	MHS Signal Options
	PRIORITY Option
	TYPE Option

	Design Considerations
	Defining Memory Size
	Defining Local Memory Size
	Internal Signals
	Interrupt Signals
	Power Signals

	Microprocessor Peripheral Definition Format
	Summary
	Overview
	Load Path
	Using Versions

	MPD Syntax
	Comments
	Format
	MPD Example

	MPD Attribute Naming Conventions
	C_FAMILY Attribute
	C_BASEADDR Attribute
	C_HIGHADDR Attribute
	C_NUM_MASTERS Attribute
	C_NUM_SLAVES Attribute
	C_NUM_INTR_INPUTS Attribute
	C_OPB_AWIDTH Attribute
	C_OPB_DWIDTH Attribute

	MPD Signal Naming Conventions
	Global Ports
	Master OPB Ports
	Slave OPB Ports

	MPD Reserved Signal Connections
	Global Ports
	Master OPB Ports
	Slave OPB Ports
	LMB Ports

	MPD Peripheral Options
	STYLE Option
	EDIF Option
	INBYTE or OUTBYTE Option

	MPD Signal Options
	BUS Option
	EDGE Option
	ENABLE Option
	ENDIAN Option
	INITIALVAL Option
	LEVEL Option
	TYPE Option

	Black-Box Description (BBD) File
	Comments
	Format
	BBD Example

	Peripheral Analyze Order (PAO) File
	Comments
	Format
	PAO Example

	HDL Design Considerations
	Scalable Data path
	Internal Signals
	Interrupt Signals
	3-state (InOut) Signals

	On-Chip Peripheral Bus (OPB) Arbiter Design Specification
	Summary
	Introduction
	OPB Arbiter Overview
	OPB Arbitration Protocol

	OPB Arbiter Design Parameters
	Allowable Parameter Combinations

	OPB Arbiter I/O Signals
	Parameter - Port Dependencies
	OPB Arbiter Register Descriptions
	OPB Arbiter Control Register
	OPB Arbiter Priority Registers

	OPB Arbiter Block Diagram
	OPB Slave Interface (IPIF)
	Control Register Logic
	Priority Register Logic
	ARB2BUS Data Mux
	Arbitration Logic
	Park/Lock Logic
	Watchdog Timer

	Design Implementation
	Device Utilization and Performance Benchmarks

	Specification Exceptions
	I/O Signals
	Priority Level Nomenclature
	Grant Outputs
	Bus Parking
	Clock and Power Management
	Scan Test Chains

	Reference Documents

	OPB Simple Interrupt Controller Specification
	Summary
	Overview
	Features
	Interrupt Controller Overview
	Simple Interrupt Controller Organization

	Programming Model
	Register Data Types and Organization
	IntC Registers
	Programming the IntC

	Implementation
	I/O Summary
	Parameterization

	OPB External Memory Controller (EMC)
	Summary
	Introduction
	EMC Overview
	Features
	EMC Background

	EMC Parameters
	EMC I/O Signals
	OPB Timing
	EMC Address Map and Register Descriptions
	EMC Control Register (EMCCR)

	EMC Block Diagram
	Memory Data Types and Organization

	Memory Controller Operation
	Basic Timing for Memory

	Connecting to Memory
	Example Memory Connections
	Example 1
	Example 2
	Connecting to Intel StrataFlash
	Example 3
	Example 4

	OPB ZBT Controller Design Specification
	Summary
	Overview
	Features

	Operation
	OPB ZBT Controller Parameters
	ZBT Controller I/O Signals
	Connecting to Memory
	Address Mapping
	Timing Diagrams
	Clock Handling

	Programming Model
	Register Data Types and Organization

	Implementation
	Design Tips

	OPB Block RAM (BRAM) Specification
	Summary
	Overview
	Features

	OPB_BRAM Parameters
	OPB_BRAM I/O Signals
	Programming Model
	Supported Memory Sizes
	Register Data Types and Organization

	OPB UART Lite Specification
	Summary
	Overview
	Features

	UART Lite Parameters
	UART Lite I/O Signals
	JTAG_UART Address Map and Register Descriptions
	Register Data Types and Organization
	Registers of the UART Lite
	The Control register contains the UART Lite control.
	Address Map

	Design Implementation
	Device Utilization and Performance Benchmarks

	OPB Serial Peripheral Interface (SPI) Design Specification
	Summary
	Introduction
	NOTICE
	SPI Device Features
	SPI Protocol with Automatic Slave Select Assertion
	SPI Protocol with Manual Slave Select Assertion

	SPI Configuration Parameters
	SPI Assembly I/O Signals
	Port and Parameter Dependencies
	SPI Register Descriptions
	SPI Interrupt Registers
	SPI Assembly Reset Descriptions
	SPI Control Register (CR)
	SPI Status Register (SR)
	Data Transmit Register (DTR)
	Data Receive Register (DRR)
	Slave Select Register (SSR)
	Transmit FIFO Occupancy Register (Tx_FIFO_OCY)
	Receive FIFO Occupancy Register (Rc_FIFO_OCY)

	Design Implementation
	Target Technology
	Device Utilization and Performance Benchmarks

	Flow Description
	SPI Master Device with or without FIFOs where the slave select vector is asserted manually via co...
	SPI Master and Slave Devices without FIFOs performing one 8-bit transfers (optional mode)
	SPI Master and Slave Devices where Registers/FIFOs are filled before SPI transfer is started and ...
	SPI Master and Slave Devices with FIFOs where some initial data is written to FIFOs, the SPI tran...

	Platform Generator Considerations
	Specification Exceptions
	Exceptions to the Motorola’s M68HC11-Rev. 4.0 Reference Manual

	Reference Documents

	OPB General Purpose Input/Output (GPIO) Specification
	Summary
	Overview
	Features
	GPIO Organization

	Programming Model
	Register Data Types and Organization
	Registers of the GPIO
	Address Map

	Operation
	GPIO Operation

	Implementation
	I/O Summary
	MPD File Parameters
	Parameterization

	OPB Timebase WDT Specification
	Summary
	Overview
	Features
	Timebase WDT Organization

	Programming Model
	Register Data Types and Organization
	Registers of the Timebase / Watchdog Timer
	Address Map

	Operation
	Timebase Operation
	WDT Operation

	Implementation
	I/O Summary
	MPD File Parameters
	Device Utilization and Performance Benchmarks
	Parameterization

	OPB Timer/Counter Specification
	Summary
	Overview
	Features
	Timer/Counter Organization

	Programming Model
	Timer Modes
	Interrupts
	Register Data Types and Organization
	Register Descriptions

	Implementation
	I/O Summary
	MPD File Parameters
	Device Utilization and Performance Benchmarks
	Parameterization

	OPB JTAG_UART Specification
	Summary
	Overview
	Features

	JTAG_UART Parameters
	JTAG_UART I/O Signals
	JTAG_UART Address Map and Register Descriptions
	Register Data Types and Organization
	Registers of the JTAG_UART
	The Control register contains the control of the JTAG_UART.
	Address Map

	Design Implementation
	Device Utilization and Performance Benchmarks

	Appendix A: MicroBlaze Endianness
	Origin of Endian
	Definitions
	Bit Naming Conventions
	Data Types and Endianness
	VHDL Example
	BRAM – LMB Example
	BRAM – OPB Example

	Appendix B: JTAG Connector
	Index

